'CS1112-206/211/212—Fall 2009

Section 13 Solution
Friday, November 27

When dealing with recursions, it is best to keep track of where we are and what we still have to
do, and make sure to transfer the values between recursive calls correctly. This can be done using
lots of scratch paper so that values from different recursive calls do not mix up, because they do
not mix up in the real program anyway.

1 Recursion

The (transposed) output for (a)is 5 2 1 3 9 243. Observe that the first three lines are the expo-
nents, where the last three lines are the power of 3 to the reverse sequence of the exponents.

The (transposed) output for (b)is 10 5 2 1 2 4 32 1024.

2 Counting Comparisons

A comparison is defined as when we take a value in ¥ and a value in v and compare them together.
The only place this is done is in the if block in the first while loop. We determine whether
u(i) < v(j). If it is, we did one comparison. Otherwise, we also did one comparison (to answer
that it is not). Hence, we can simply increment count after the if block’s end. Where do we
initialize count? Answer: Before we begin counting, i.e., initialize it before the first while loop.

3 Counting Comparisons and Recursion

If N = 1, we do not have to compare anything, so count0OUT will be the same as countIN. Hence,
we can assign countOUT=countIN in the if block. Otherwise, we need to call MergeSortR
recursively. ¢; is countIN plus the number of comparisons used to sort the left half of the array.
¢ 1s countIN plus the number of comparisons used to sort the right half of the array. c3 is the
number of comparisons used to merge the two halves. Therefore, the number of comparisons done
to sort the array is

(c1 — countIN) + (¢ — countIN) + c3.

Since the desired countOUT is countIN plus the number of comparisons, we can assign
count0UT=cl1+c2+c3-countIN;

at the end of the else block (but before the keyword end).

4 Counting Recursive Calls

The number of lines represents the number of recursive calls to MergeSortR. We can do this by
hand by running through the code carefully to calculate the length of the vector to be sorted in each
recursive call. The solution is posted on the course webpage (Section13.m).

CS1112-206/211/212 Fall 2009 171 Section 13 Solution



