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Lab 8 Solution
Friday, October 23

1 Contour Plotting

(a) m is the number of grid points on each row and each column. The higher m is, the more refined the
grid is.

(b) nContours is the number of intervals used to draw contours. This is used in the linspace function
on the line below. The lower nContours is, the higher the difference between the values of the two
contours next to each other. This is because the values on the contours that are drawn are exactly
the values in the vector (v) passed in to contour.

(c) axis equal square format the axis so that the scale on both axes is the same. That is, it takes
the same distance on the screen from x D 1 to x D 2 and from y D 1 to y D 2. It also make the
overall plot square, meaning x and y at the end of both axes are the same.

(d) clabel lets you click on the contour to display the value at the point you click. Remember to press
Enter when you are done clicking (instead of closing the figure window).

(e) The original program works for q D 3 only. If q is arbitrary, this loop body will not work because it
has not considered all the distances from .x.j /; y.i// to all the random points. To fix this, we need
to have a program structure that can handle an arbitrary number of points, provided that the number
of points is known. A for loop sounds promising here. What we have to do is to make sure to go
over all the random points and calculate the distance from our current point (.x.j /; y.i//) to each
of those random points. In the original program, we store the three distances in three variables.
How do we allocate storage that can handle an arbitrary number of points? A vector seems a good
option.

Therefore, what we have to do is to create a vector d of length q such that d.i/ is the distance from
our current point to random point i . Once we are done calculating the distances, we need to take
the minimum. The min function can take a vector, so A(i,j)=min(d); is sufficient here.

(f) We want to find a point P on the grid such that the distance from P to its closest random point
(city) is as large as possible. This means that for this point P and some other point Q, the distance
from P to its closest city must be at least the distance from Q to its closest city.

What information do we have here? We have the matrix A that stores the distance from each
point in the grid to the city closest to that point. Hence, having A, what we have to do is to find the
maximum value in A. The problem would be this easy if we just had to display what this maximum
value is, but it also asks you to highlight the point on the grid. Hence, in addition to knowing the
maximum value, we also have to locate where this point actually is. This can be done by keeping
the indices of the matrix when a new maximum is set.

Lastly, we have to display the point. We have the indices of the point, but not the coordinate values
of the point itself. Hence, we have to refer to x and y to get coordinate values.

The course webpage does not have a solution to this part, so you can find it below:
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[nr,nc]=size(A);

% find maximum value and its location in A

max=-1;

for row=1:nr

for col=1:nc

if A(row,col)>max

max=A(row,col);

maxX=col;

maxY=row;

end

end

end

% plot the location of maximum value

plot(x(maxX),y(maxY),’or’);

Note that we can set the initial max to be �1 because we know that any distance (in A) must be
nonnegative. Be careful about which variable refers to column and which refers to row.

2 Sudoku Checker

We are provided the function OkVec that can handle any length-9 (row or column) vector. Hence,
we just have to treat it as a black box and use it correctly and efficiently. What do we have to do
here? We need to consider each row, each column, and each Sudoku submatrix. For the rows and
columns, we can simply pass it on to OkVec and we are done. For the submatrices, we need to
transform it into a correct format that OkVec accepts first.

The fragment A(i,:) refers to row i of the table. Similarly, the fragment A(:,j) refers to
column j of the table. What about the submatrix beginning whose top-left cell is .i; j /, where
i; j D 1; 4; 7? In order to use OkVec, we need to transform this into a row or a column vector. The
most convenient way is to use vectorized code. The fragment

[A(i,j:j+2) A(i+1,j:j+2) A(i+2,j:j+2)]

does the job. The result is a length-9 row vector. Once we have this vector, we can now simply
pass it on to OkVec.
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