
CS1112-206/211/212–Fall 2009
Section 7 Solution

Friday, October 16

At the time of this writing, no solutions have been posted on the course webpage. As a result,
solutions to this exercise are posted on the section page. Please follow the styles used in these
scripts (e.g., comment header and function description) as they represent a good style practice that
would earn a full style credit on the projects.

1 Determinant of a 3x3 Matrix

The only complication of this problem is creating three new, smaller matrices from the matrix we
are given so that we can use them for the built-in det function. Otherwise, the remaining of the
function is simple since we need not use any loops or conditional statements.

2 Find a Value in a Matrix

Note that we need to find all the occurrences of the given value in the given matrix. The only way
to do this correctly is to examine all the elements of the matrix. Since matrices come in rows and
columns, one way to achieve this goal is to go through each row and each column. That is, for each
row, go through each column and determine whether that element is equal to the given value. This
immediately suggests a nested-loop structure for our solution. The built-in function size gives us
the dimension of the matrix.

Now that we can access each element of the matrix, what should we do if the value is equal
to the element we are considering? We should add the location (row and column) to the return
variables. Because we are adding the location, the return variables should be initialized first.
Where should we do it? Since they are global to the whole function (that is, initializing anywhere
inside the loop might not give a correct solution), we initialize them before the loops.

Another, final concern is that the function requires r and c to be column vectors. This can be
done by using ; operator when we append the location to r and c.

Those are essentially what we have to do. Following this idea, we arrive at a solution similar
to the one posted on the section page.

3 Random Walks

First, observe that a random walk on the 21 � 21 grid centered at the origin is on the square
Œ�10; 10� � Œ�10; 10�. In order to determine the most frequently visited square efficiently, a fre-
quency matrix must be used. We first obtain random walk information from the function we are
provided with. We can treat it as black boxes: We do not have to care what it actually does, and,
more importantly, we cannot modify it. All we care is that the function returns the locations of the
walk. So, we just have to go through the locations one by one and update the frequencies accord-

CS1112-206/211/212 Fall 2009 1/2 Section 7 Solution



ingly. Once we are done with this, we can go through all the elements in the frequency matrix and
find the location of the maximum frequency.

There are a few catches to this. Since the coordinates a location can be negative, some care
must be taken when updating the frequency matrix, or we will index it with an out-of-bound value.
Hence, we have to make sure that all the coordinates we might have correspond to positive indices
for the frequency matrix. Since we know that the minimum value of any coordinate is �10, we
just have to add 11 to each coordinate so the indices are between 1 and 21. Now, when we report
the location of the most visited square, we also have to adjust this accordingly—by subtracting the
indices we found by 11.

Another, more subtle catch is how we specify the dimension of the frequency matrix. Since the
grid we are dealing with in this problem is square-shaped, this problem does not come up. What
if we have a line (e.g., 1 � 100) grid? Here, there is only one row in the grid, but there are 100
columns. Hence, we should initialize a 1 � 100 matrix to keep track of frequency. We also need
to index into the matrix correctly, as an x-coordinate corresponds to a column and a y-coordinate
corresponds to a row. This is why the indices are swapped in the solution posted on the section
page.

Finally, we can observe that some squares might not be visited at all, so why bother examining
all the elements in the frequency matrix? A better way to do this, as an improvement, is to update
the maximum as we go through the locations of the walk. Since frequencies only increases, we
can do this. That is, when the frequency we are dealing with is greater than the maximum we
have found so far, we can record that the current frequency is a new maximum and also record
the location of this square. Then we will have the location of the most visited square immediately
when we are done with the locations of the walk. This approach becomes the solution posted on
the section page.

CS1112-206/211/212 Fall 2009 2/2 Section 7 Solution


