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1 Different Ways to Create Vectors

a= zeros(1,4) % 0 0 0 0

b= zeros(4,1) % 0

% 0

% 0

% 0

% What do the arguments specify? the number of rows and columns, respectively

c= ones(1,3) % 1 1 1

d= 10:2:17 % 10 12 14 16

f= 10:-1:17 % Empty matrix: 1-by-0

g= [10 20 40] % 10 20 40

% What does the space separator do? go to the next column

h= [10,20,40] % 10 20 40

% What does the comma separator do? go to the next column

k= [10;20;40] % 10

% 20

% 40

% What does the semi-colon separator do? go to the next row

m= [a g] % 0 0 0 0 10 20 40

n= [b; k] % 0

% 0

% 0

% 0

% 10

% 20

% 40

p= [a k] % ERROR--mismatched dimensions! (Attempt to concatenate a column to a row)

% Error because a is of size 1-by-4 and k is of size 3-by-1

% Otherwise, the resulting p would look like this:

% 0 0 0 0 10

% 20

% 40

q= b’ % 0 0 0 0

% This operation is called "transpose"

r= [a b’] % 0 0 0 0 0 0 0 0

2 Rolling Fair Dice

It is important that we really roll d dice for n times. That is, for each time we roll the dice, we
need to roll each die one by one and sum the faces that show up. So, we have to pick d random
numbers between 1 and 6 for each time we roll the dice. This is not the same as picking a random
number between d and 6d . The reason is as follows:
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Suppose we pick a random number between d and 6d . The probability (chance) that d is
chosen is as likely as the probability that 3d is chosen. But if we pick d random numbers between
1 and 6, then the chance that the sum of the d faces is d is exactly the probability that all the d dice
come up 1. Now, the chance that the sum of the d faces is 3d is the probability that all the d dice
come up 3, or that half of the dice come up 1 and the other half come up 5. It is now easy to see
that the chance of getting 3d is definitely more than the chance of getting d as the sum. Therefore,
we need to be aware of this difference.

Now, let us reiterate what we already know. For each time we roll the dice, we need to roll
each die one by one and sum the faces that show up. This suggests a nested-loop structure for the
program. That is, the outer loop loops for n times for the number of times we roll the dice. For
each of that, the inner loop loops for d times for the number of dice we are rolling. Then, we need
to keep track of the sum of the faces. Since the sum is independent for each time we roll the dice
(that is, the sum of this round does not affect the sum of any other round), we can reset (initialize)
the sum before the inner loop. Now, it is easy to just add the outcome of each roll in that round to
the sum.

Once we are done for each round, we need to increment the frequency of the sum we have.
For this, the frequency is global for the whole script (that is, initializing it inside a loop will not
represent the actual counts), so we have to initialize this frequency array outside and before the
loops. How long should this vector be? It should be at least the maximum possible sum of the dice
in each round. Since there are d dice, each having maximum face of 6, the maximum possible sum
is 6d .

Now that we have the frequency, we just have to plot the histogram. The built-in function bar

does the job.

3 Examining a Subarray

Just an aside, this kind of array search is called linear search because we start searching from the
first element of the array and look for the key element by element in the array until we find it.
Here, r is the key. We are also limited with the number of elements we have to search before we
report the results. Again, some care must be taken here, because n can be any integer, including
nonpositive ones and ones that exceed the length of the vector. Therefore, before we index any
element of the array, we need to make sure that the index is not out of bound. For nonpositive n’s,
this can be interpreted as, “Determine whether r appears in the first [�1; 0;�50, etc.] components
of v,” but since no elements are in these first components of v, we can infer that r is not found and
report this accordingly.

A first approach is to use a for loop. We keep searching until we have seen n elements or until
we run out of elements (that is, we have examined the whole array). If r is found, then we set the
return value to 1. What if r is not found? Then the return value should be 0 in the end. We cannot
set it to 0 if the element we are examining is not r because we might have seen r earlier, and this
will overwrite the result we should return. Hence, we have to initialize it to 0 prior to looking into
the array. Then, if r is found, the return value will be set to 1 correctly, and otherwise it remains 0.

Nonetheless, it seems silly that we need to keep looking if we already find r . To contemplate
this, suppose that the vector is really long, n D 10000, and that r is the first element of this vector.

CS1112-206/211/212 Fall 2009 2/3 Lab 6 Solution



Then we should be able to report that r is found once we have examined the first element. Using
for loop as above, we need to unnecessarily go through 10000 elements. We can fix this by using
a while loop and terminate the loop as soon as we find r . This is the solution posted on the course
webpage.

4 Concatenating Arrays

Once we have vectorQuery, this task is easy. We keep generating a random number and adding
it to v until what we generate is already in v. How do we know that an element is already in v?
Well, this is what vectorQuery is for. Now, what do we pass as the arguments for vectorQuery?
Certainly, we need to pass v and the number we have just generated. How about the length limit
(n)? We can simply pass length(v), which returns the length of v so that vectorQuery knows
when to stop.
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