'CS1112-206/211/212—Fall 2009
Lab 4 Solution
Friday, September 25

1 Binomial Coefficients

(a) This part is easy: just use a single for loop and code in the formula correctly.

(b) This part is more challenging. The intuition is that, if n < 5, then we print all the values of
(Z), where k = 1,...,5. Otherwise, if n > 5, then we need to stop printing after k = 5.

One way to do this is to simply modify Part (a).

Another way which avoids using for and if together is to use a while loop with condition

k<=n && k<=5. Since we use k in the while’s logical expression, we need to instantiate it

first. The first k is 1, so we just need to have k=1; before the while loop. Also, because

while loop does not update k automatically, we have to update it ourselves: k=k+1; is

needed as the last line of the loop.

The main part would look like the following:

k=1;

while k<=n && k<=5
nChooseK=factorial(n)/factorial(k)/factorial (n-k);
fprintf (°%d choose %d = %d\n’,n,k,nChoosek) ;
k=k+1;

end

Yet, another way is to use the MATLAB’s built-in function min to determine the minimum
between n and 5 and use this value as the limit for the for loop. This solution is on the
course webpage.

(c) Instead of calling factorial repeatedly, which—in some sense—is an expensive operation
to do, we could use our intelligence to observe the relationship between our current binomial
coefficient and the next one. Suppose we know the value of ( " ) We could derive the

k—1
formula as follows:
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Now, when we calculate (Z) we must have calculated (kfl), so why not use this value? To
use the value, we must save it somewhere. The place to save is an additional variable that
stores the last binomial coefficient calculated. In fact, we can use the variable originally used
to store the value of (Z) and keep updating it when we calculate the next coefficient. The
solution is on the course webpage.

One might wonder how we could obtain the first binomial coefficient if we need the one
before. The answer is quite intuitive: We just have to know this value. More concretely, to
calculate (’;) we must know (g) For this issue, it is acceptable (and indeed necessary) to
assume that (011) for any n. (Note that the solution on the course webpage starts from k = 2
instead of 1, so the value assumed is n instead of 1.)

(d) This is the most difficult task to understand in the first place, but once we do, it becomes not
so bad. Just to clarify: This part does not depend on the input n. Instead, we always run
from n = 1 to 10 and, for each n, print out the number of digits of (Z) fork =1,...,n
on the same line. That means the output for different n’s should be on separate lines. If
programmed correctly, your solution should output 55 numbers that form a triangular shape,
with base at the bottom.

A question that popped up was how to print several numbers on the same line. The trick
is to use fprintf; disp does not work because it always prints a new-line character at the
end. We do not print the new-line character (\n) until we are done with a line. At that point,
fprintf (’\n’) ; should do the job.

The remaining of this Part is more technical and the reader may skip this if preferred. For
those who are interested, read on.

Instead of using the approach as in the posted solution, one might try to use Part (c) to help
calculate the number of digits. That is, the following program should output correct results:

for n=1:10
% log value of binomial coefficient
digits=0;
for k=1:n
% update log value using formulas:
% — loglO(x*y)=1logl0(x)+loglO(y)
% - logl0(x/y)=1log10(x)-logl0(y)
digits=digits+loglO(n-k+1)-logl0(k);
fprintf (°%d ’,floor(digits)+1);
end
fprintf(’\n’);
end

As we might have learned from our programming experience so far, the last task to do for
programming is testing. To test this program is easy: just run it! Here is the output:
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Obviously, something is wrong here. No binomial coefficients have no digits! What went
wrong is the inaccuracy in adding floating-point numbers. As we just learned from class this
week, there is a limit on how precise a decimal can be represented in a computer, and this
program illustrates the problem! Solutions to this are out of our control; we have to blame
the language designer or people who standardized these things, or just put up with it and find
another, “correct” solution.

2 Fibonacci Numbers

(a)

(b)

(c)

(d)

Easy: Instead of printing in every iteration, move the print statement to after the loop so it
prints the final value only once.

This is, again, a while-loop program. We just have to change the condition for the loop to
limit on the value of the Fibonacci number instead of the argument . (The last value printed

is f30.)

Part (b) already sets the upper bound. We just have to add in the lower bound. The first
number we start printing is one just greater than 10,000. So, if the value has not exceeded
10,000, do not print it out! ( f>1,..., f3¢ are printed.)

This is not too difficult, but there is a catch if the programmer is not careful enough. In
specifying 1+2*f5, we have to put parentheses correctly. We also have to make sure to enter
the correct error threshold. Last but not least, we should associate f, and f,+; with £_old
and f_cur correctly, but this totally depends on which values are printed, etc. That is, this

part should look like

abs (f_cur/f_old-(1+sqrt(5))/2)>0.000001

Incorrect expressions will lead ton = 1476, n = 17, or n = 15. (The resultis n = 16.)
Note that the solution on the course webpage is incorrect: The logical expression for the
while loop should be exactly as above, or (as another fix) is to change to £ _01d=0; instead,
but do only one of these, not both. As we see, it is really easy to make a mistake in this kind
of problems! Does your program divide anything by zero?
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3 Challenge Problems

For convenience, we provide the problems below. The solutions to these problems are posted on
the section webpage.

3.1 P3.1.7

Write a script that “draws” the figure below in the Command Window using fprintf statements.
Prompt the user to input an integer n for the number of asterisks on each side of the square. Assume
n > 3.

*ok Kok k
**x %k
* k%
*  kk
*ok Kok k

Recall that fprintf (’ ’); prints a single blank (space) while fprintf (’\n’) ; starts a new line.

Solution: Just to clarify, the figure above is for n = 5. Here comes the solution. First, observe that
we need to print at all columns in the first and last rows, and the first and last columns always need
to be printed. The more difficult part is the diagonal inside. But this is not that hard: The second
row is at the second position, the third row is at the third position, and so on. In general, for the i
row, where 2 < i < n — 1, the asterisk should be printed at the i"" column. Lastly, do not forget to
print a new line after a line is completely printed.

3.2 P3.27
Define
[0 == A/ 1 + 0
tl = 1 —|- 1
h, = 1+2
;3 = I1+2+1+43
ty = \/1-1—2 1+3v1+4
I5 = \/1+2\/1+3 1+ 44145,
Pick up the pattern and develop a program that prints 74, ..., t¢. A loop is required for each #.

Solution: As a hint from the problem statement, a loop is required for each 7. But we also need
to loop through all the k’s so this is, yet, another nested-loop problem. As anticipated, the most
difficult task for this problem is to determine the pattern. We see that the only special cases occur
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when k = 0,1. For these values, it is simple enough to just hard-code the values. Now we
concentrate on determining the pattern for the rest.

Because the way function call works (in any programming language), we need to calculate the
innermost expression first before calculating outer ones. We start with 1 as running result. Multiply
by k, add 1 to this result and take a square root. This is one iteration of the loop. The next iteration
takes the running result, multiplies by k — 1, add 1, and take a square root. The successive iterations
does exactly the same with decrementing values of the number we multiply. We stop multiplying
after the number multiplied is 2. Then we have the final answer.

CS1112-206/211/212 Fall 2009 5/5 Lab 4 Solution



