
CS1112-206/211/212–Fall 2009
Section 3 Solution
Friday, September 18

1 Multiples of k

We basically need to print out k; 2k; 3k; : : : ; nk, such that nk � 1000 and .nC 1/k > 1000. That
is, we start at k, stepping by k at a time until the value exceeds 1000. Hence, what goes in the
blank is k:k:1000.

2 Approximate �

We will do the approximation using Rn here. Using Tn is similar and is left as an exercise.
Because we need to calculate Rn for n D 100; 200; : : : ; 1000, we need a for loop that keeps

the current value of n. For each n, we compute Rn by calculating each term r_k in the summation
and accumulate the results using a variable sum that serves as the running sum of current Rn. That
is, the algorithm would look like the following:

for n=100:100:1000

sum=0;

for k=1:n

r_k=(-1)^(k+1)/(2*k-1);

sum=sum+r_k;

end

rho_n=4*sum;

error=abs(pi-rho_n);

fprintf(’n=%d, error=%.20f\n’,n,error);

end

This program outputs

n=100, error=0.00999975003123942940

n=200, error=0.00499996875097696860

n=300, error=0.00333332407420172670

n=400, error=0.00249999609377882240

n=500, error=0.00199999800000805190

n=600, error=0.00166666550926208860

n=700, error=0.00142857069970858670

n=800, error=0.00124999951171744780

n=900, error=0.00111111076817493880

n=1000, error=0.00099999974999898100

CS1112-206/211/212 Fall 2009 1/2 Section 3 Solution



Note that we need to reset sum for every iteration. Otherwise, old values from the previous
calculation would be carried over, and the later iterations would not calculate the correct values of
Rn.

One might observe that the program above repeatedly calculates r1; r2; : : : ; r100 for every it-
eration. We can simply eliminate these repetitions by keeping calculating rk for each k. Once
the value of k reaches a value of n, we know that sum must equal Rn at that point. We then can
calculate rho_n and prints out the error associate with this rho_n. This eliminates the outer for
loop, but we have to change the criteria for the other for loop accordingly. The resulting program
is presented in the solution on the course webpage.

3 The One-Million-Digit nŠ

In this problem we do not know the final value of n; otherwise we would not have to solve this
problem! As in the last section, we will keep the number of digits we have so far of kŠ. We keep
incrementing k until we find that the number of digits of kŠ is at least one million. The point to
note here is that we need not calculate the actual value of kŠ; we just need to determine the number
of digits of kŠ.

First, we know that 1Š has 1 digit. That was easy. Now, suppose we know the number of digits
of kŠ, which is floor.log10.kŠ//C 1. In particular, we know log10.kŠ/ as well. How do we find the
number of digits of .k C 1/Š? Observe that .k C 1/Š D .k C 1/ � kŠ. Hence, the number of digits
of .k C 1/Š is

floor.log10Œ.k C 1/Š�/C 1 D floor.log10Œ.k C 1/ � kŠ�/C 1

D floor.log10.k C 1/C log10.kŠ//C 1:

Because we already know log10.kŠ/, we can easily calculate the above quantity by computing
log10.k C 1/, sum them up, and take the floor.

From the above discussion, we see that we need to keep track of log10.kŠ/, which is the sum of
log10.i/ from i D 1; 2; : : : ; k. This results in the following program:

n=1;

sum_logs=0;

while floor(sum_logs)+1<1000000

n=n+1;

sum_logs=sum_logs+log10(n);

end

fprintf(’%d! has at least one million digits.\n’,n);

It turns out that 205022Š has at least one million digits.

CS1112-206/211/212 Fall 2009 2/2 Section 3 Solution


