CIS260-201/204-Spring 2008
 Modular Exponentiation ${ }^{1}$

Friday, April 25
Let b be a positive integer. The notation a^{b} means to multiply a by itself repeated, with a total of b factors of a; that is,

$$
a^{b}=\underbrace{a \times a \times \cdots \times a}_{b \text { times }} .
$$

The notation for \mathbb{Z}_{n} is the same. If $a \in \mathbb{Z}_{n}$ and b is a positive integer, in the context of \mathbb{Z}_{n} we define

$$
a^{b}=\underbrace{a \otimes a \otimes \cdots \otimes a}_{b \text { times }} .
$$

This is called modular exponentiation.
Example: Calculate 2^{16} in \mathbb{Z}_{7}.
We see that $2^{16}=65536.65536 / 7=9262.2857 \ldots$, so 65536 div $7=9362$. Now, $9362 \cdot 7=$ 65534 , so $65536 \bmod 7=65536-65534=2$. Therefore, $2^{16}=2$ in \mathbb{Z}_{7}.

That wasn't so bad, especially if we have a calculator. But what if the exponent becomes too large for a calculator to handle? For example, what is 3^{64} in \mathbb{Z}_{100} ? Then this method of direct exponentiation becomes intractable.

Is there any better way? The answer is yes, and we begin with the following question: Is $a^{b}=a^{b \bmod n}$? Let's try the above example where $a=2, b=16, n=7$. Then $a^{b}=2$, as calculated above. Now, $a^{b \bmod n}=2^{16 \bmod 7}=2^{2}=4$. But $2 \neq 4$, so this statement is false.

So merely modulo-ing the exponent does not help. Let's try another way. Instead of directly calculating the exponentiation and mod, why don't we take a power at a time and reduce the remainder as necessary? Moreover, to calculate some power, we don't need to multiply by a repeatedly. Once we have a^{b}, if we multiply this to itself, we get $a^{2 b}$. If we do that again to $a^{2 b}$, we get $a^{4 b}$. This will take us to the destination much faster. Consider the last example again.
Example: Calculate 2^{16} in \mathbb{Z}_{7}.
We have $2^{2}=4$, so $2^{4}=16$, so now we can reduce the remainder as $16 \equiv 2(\bmod 7)$. Doing this again, we obtain

$$
\begin{aligned}
2^{8} & \equiv 4(\bmod 7) \\
2^{16} & \equiv 16 \equiv 2 \quad(\bmod 7)
\end{aligned}
$$

as expected.
Let's try a more complicated example mentioned earlier.
Example: Calculate 3^{64} in \mathbb{Z}_{100}.
Once again, we use the method of "repeated squaring" and obtain the following result.

$$
3 \equiv 3 \quad(\bmod 100)
$$

[^0]\[

$$
\begin{aligned}
3^{2} & \equiv 9 \quad(\bmod 100) \\
3^{4} & \equiv 81 \quad(\bmod 100) \\
3^{8} & \equiv 6561 \equiv 61 \quad(\bmod 100) \\
3^{16} & \equiv 3721 \equiv 21 \quad(\bmod 100) \\
3^{32} & \equiv 441 \equiv 41 \quad(\bmod 100) \\
3^{64} & \equiv 1681 \equiv 81 \quad(\bmod 100)
\end{aligned}
$$
\]

Hence, $3^{64}=81$ in \mathbb{Z}_{100}.
What if the exponent is not a multiple of 2 ? Well, we proved by induction before that any number can be written as the sum of the powers of 2 , so why don't we use it here?
Example: Calculate 4^{13} in \mathbb{Z}_{9}.

$$
\begin{aligned}
4 & \equiv 4 \quad(\bmod 100) \\
4^{2} & \equiv 16 \equiv 7 \quad(\bmod 100) \\
4^{4} & \equiv 49 \equiv 4 \quad(\bmod 100) \\
4^{8} & \equiv 16 \equiv 7 \quad(\bmod 100)
\end{aligned}
$$

Now, $13=8+4+1$, so $4^{13}=4^{8} 4^{4} 4^{1}$. Thus, $4^{13} \equiv 7 \cdot 4 \cdot 4=28 \cdot 4 \equiv 1 \cdot 4=4 \quad(\bmod 9)$. That is, $4^{13}=4$ in \mathbb{Z}_{9}.

If n is small enough, there is another method, presented in the following example.
Example: Find the remainder of 2^{2008} when divided by 7.
First, note that $2^{3} \equiv 1 \quad(\bmod 7)$. Hence, if we raise 2^{3} to any power, the remainder must still be 1. Now, $2008=3 \cdot 669+1$, so $2^{2008}=2^{3 \cdot 669} 2^{1}=\left(2^{3}\right)^{669} 2 \equiv 1^{669} 2=2 \quad(\bmod 7)$. That is, $2^{2008} \bmod 7=2$.

Exercises:

1. Let $a, b \in \mathbb{Z}$. Prove that in $\mathbb{Z}_{n}, a^{b}=(a \bmod n)^{b}$.
2. What is the last digit of 7^{123456} ?
3. What is the last two digits of 101^{2551} ?
4. Calculate 2^{2547} in \mathbb{Z}_{11}. [Hint: $2^{5}=32 \equiv 10 \equiv-1 \quad(\bmod 11)$.]
5. Calculate 4^{2008} in \mathbb{Z}_{13}.
6. Calculate 5^{63} in \mathbb{Z}_{66}.
7. Calculate 121^{2009} in \mathbb{Z}_{260}.
8. [Extra Credit!] Calculate 1155^{1234} in \mathbb{Z}_{123}. [Hint: Factor 1155.]

[^0]: ${ }^{1}$ Adapted from Exercise 36.14 in the textbook

