CIS260-201/204–Spring 2008 Recitation 13 Supplementary Exercises Friday, April 25

First Note: Please make sure that you understand the proof of Theorem 34.1, especially the uniqueness part of the proof.

- 1. Prove or disprove the following statements.
 - (a) For all integers a, b, we have $b \mid a$ iff a div $b = \frac{a}{b}$.
 - (b) For all integers a, b, we have $b \mid a \text{ iff } a \mod b = 0$.

2. Let $a, b, n \in \mathbb{Z}$ with n > 0. Prove that $a \equiv b \pmod{n}$ if and only if $a \mod n = b \mod n$.

3. Prove that the sum of any k consecutive integers is divisible by k.

- 4. Let *a* and *b* be positive integers. Find the sum of all the common divisors of *a* and *b*.
- 5. If $n \in \mathbb{Z}^+$ and $n \ge 2$, prove that

$$\sum_{i=1}^{n-1} i \equiv \begin{cases} 0 \pmod{n}, & n \text{ odd} \\ \frac{n}{2} \pmod{n}, & n \text{ even} \end{cases}.$$

6. Prove that if *a* and *b* have a greatest common divisor, it is unique, i.e., they cannot have two (distinct) greatest common divisors.

7. Suppose $a, b \in \mathbb{Z}$ are relatively prime. Recall that there exist integers x, y such that ax + by = 1. Prove that gcd(x, y) = 1.

8. (a) Let $a, b, c \in \mathbb{Z}$. If $a \mid bc$ and gcd(a, b) = 1, prove that $a \mid c$.

(b) Let p,q ∈ Z be prime numbers and let a ∈ Z. Prove that p | a and q | a if and only if pq | a.

(c) Let $m, n \in \mathbb{Z}$ and p be a prime. Prove that if $p \mid mn$, then $p \mid m$ or $p \mid n$. [Hint: Use Part 8(a).]

- 9. This problem is a continuation of Quiz 8. Let *n* be a positive integer and suppose $a, b \in \mathbb{Z}_n$ are both invertible. Prove or disprove the following statements.
 - (a) $a \ominus b$ is invertible.
 - (b) $a \oslash b$ is invertible.

10. Find the multiplicative inverse of the following elements or state that none exists.

(a)
$$2 \in \mathbb{Z}_{17}$$
(c) $13 \in \mathbb{Z}_{1001}$ (e) $119 \in \mathbb{Z}_{1547}$ (g) $123 \in \mathbb{Z}_{4321}$ (b) $8 \in \mathbb{Z}_{17}$ (d) $101 \in \mathbb{Z}_{1001}$ (f) $121 \in \mathbb{Z}_{1547}$ (h) $447 \in \mathbb{Z}_{4321}$