\qquad

CIS260-201/204-Spring 2008
 Recitation 12 Supplementary Exercises

Friday, April 18

1. David tosses a fair coin eight times. Given that his first and last outcomes are the same, what is the probability he tossed five heads and three tails?
2. A grab bag contains one chip with the number 1 , two chips each with the number 2 , three chips each with the number $3, \ldots$, and n chips each with the number n, where $n \in \mathbb{Z}^{+}$. All chips are of the same size, those numbered 1 to m are red, and those numvered $m+1$ to n are blue, where $m \in \mathbb{Z}^{+}$and $m \leq n$. If Dale draws one chip, what is the probability it is the chip with 1 on it, given that the chip is red?
3. Let X be a random variable defined on a sample space (S, Pr). Is it possible for X to be independent of itself?
4. Let A and B be events. Prove that $\operatorname{Pr}(A \mid B) \geq \frac{\operatorname{Pr}(A)+\operatorname{Pr}(B)-1}{\operatorname{Pr}(B)}$.
5. An unfair coin shows HEADS with probability p and TAILS with probability $1-p$. Suppose this coin is tossed twice. Let A be the event that the coin comes up first HEADS and then TAILS and let B be the event that the coin comes up first TAILS and then HEADS.
(a) Calculate $\operatorname{Pr}(A)$.
(b) Calculate $\operatorname{Pr}(B)$.
(c) Calculate $\operatorname{Pr}(A \mid A \cup B)$.
(d) Calculate $\operatorname{Pr}(B \mid A \cup B)$.
(e) Explain how to use an unfair coin to make a fair decision (choose between two alternatives with equal probability).
6. When a coin is tossed three times, for the outcome HHT we say that two runs have occurred, namely, HH and T. Likewise, for the outcome THT we find three runs: T, H, and T. Now suppose a biased coin, with $\operatorname{Pr}(H)=3 / 4$, is tossed three times and the random variable X counts the number of runs that result.
(a) Determine the probability distribution for X. [Hint: What are the possible outcomes of X ?]
(b) Determine $\mathrm{E}[X]$.
7. Let X be a random variable with probability distribution

$$
\operatorname{Pr}(X=x)= \begin{cases}c\left(x^{2}+4\right), & x=0,1,2,3,4 \\ 0, & \text { otherwise }\end{cases}
$$

where c is a constant. Determine
(a) the value of c
(b) $\operatorname{Pr}(X>1)$
(c) $\operatorname{Pr}(X=3 \mid X \geq 2)$ [Hint: Use part 7(b).]
(d) $\mathrm{E}[X]$
8. On the way from 30th Street Station to 36th Street Station, a SEPTA Route-34 trolley encounters eight signal posts. One day the signal system goes awry and each post displays a Red light 25% of the time, independent of other signal posts. Chin loves looking toward the front of the trolley and he happens to be on this trolley that day. If the random variable X counts the number of Red lights Chin encounters on his way from 30th Street Station to 36th Street Station, determine
(a) $\operatorname{Pr}(X=0)$
(b) $\operatorname{Pr}(X=3)$
(c) $\operatorname{Pr}(X \geq 6)$
(d) $\operatorname{Pr}(X \geq 6 \mid X \geq 4)$
(e) $\mathrm{E}[X]$
\qquad
9. Suppose X is a zero-one random variable, i.e., an indicator random variable. Prove that $\mathrm{E}[X]=\mathrm{E}\left[X^{2}\right]$.
10. Let X and Y be real-valued random variables defined on a sample space (S, Pr). Suppose $X(s) \leq Y(s)$ for all $s \in S$. Prove that $\mathrm{E}[X] \leq \mathrm{E}[Y]$.
11. In this problem we explore the Markov's inequality. Let (S, Pr) be a sample space and let $X: S \rightarrow \mathbb{N}$ be a nonnegative-integer-valued random variable. Let a be a positive integer. Prove that

$$
\operatorname{Pr}(X \geq a) \leq \frac{\mathrm{E}[X]}{a}
$$

[Hint: $\operatorname{Pr}(X \geq a)=\operatorname{Pr}(X=a)+\operatorname{Pr}(X=a+1)+\operatorname{Pr}(X=a+2)+\cdots$.
12. In class on $\mathrm{R} 04 / 17$ we stated a theorem about variance: Let X and Y be random variables. If X and Y are independent, then

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

Prove this theorem. [Hint: If X and Y are independent, then $\mathrm{E}[X Y]=\mathrm{E}[X] \mathrm{E}[Y]$.]

