CIS260-201/204-Spring 2008
 Inverse of a Function

Friday, February 22
We have studied functions in class. This document recapitulates some definitions needed for later discussion in the document about the inverse of a function.

1 Functions

Definition: Let A and B be sets. f is a function from A to B, denoted $f: A \rightarrow B$ if

1. f is a relation from A to B, i.e., $f \subseteq A \times B$,
2. for every element $a \in A$ and any elements $b_{1}, b_{2} \in B$, if $\left(a, b_{1}\right) \in f$ and $\left(a, b_{2}\right) \in f$, then $b_{1}=b_{2}$, and
3. for every element $a \in A$, there is an element $b \in B$ such that $(a, b) \in f$.

Property 1 states that in order for f to be a function from A to B, f must at first be a relation. Property 2 states that any element $a \in A$ relates to at most one element in B. These two properties comprise the definition of function. Property 3 states that any element $a \in A$ relates to at least one element in B. Therefore, the last two properties state that every element in A relates to exactly one element in B. All the three properties comprise the definition of $f: A \rightarrow B$.

Notation: When f is a function and $(a, b) \in f$, we write $f(a)=b$.
Definition: $f: A \rightarrow B$ is one-to-one if for any elements $a_{1}, a_{2} \in A$ and $b \in B$, if $\left(a_{1}, b\right) \in f$ and $\left(a_{2}, b\right) \in f$, then $a_{1}=a_{2}$.
Since f is a function, we can also write, "if $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=a_{2}$." This definition states that any element $b \in B$ has at most one element in A that relates, or maps, to it. Notice that this definition is quite similar to property 2 in the definition of functions.

Definition: $f: A \rightarrow B$ is onto if for any element $b \in B$, there is an element $a \in A$ such that $(a, b) \in f$.
Since f is a function, we can also write, " $f(a)=b$." This definition states that any element $b \in B$ has at least one element in A that maps to it. Again, notice that this definition is quite similar to property 3 in the definition of functions.
Definition: $f: A \rightarrow B$ is a bijection if f is one-to-one and onto.
This definition states that any element in A relates to exactly one element in A. Notice that this definition is quite similar to the combination of properties 2 and 3 in the definition of functions.

2 Inverse of a Function

Definition: Let R be a relation. The inverse if R, denoted R^{-1}, is defined by

$$
R^{-1}=\{(y, x) \mid(x, y) \in R\}
$$

That is, the inverse of a relation R is obtained by flipping the elements in each ordered pair of R.
If f is a function from A to $B . f$ might not be a function.
Example: Let $A=\{1,2,3\}$ and $B=\{1,2,3,4\}$. Consider $f=\{(1,2),(2,3),(3,2)\}$. Observe that f is a function from A to B. Now,

$$
f^{-1}=\{(2,1),(2,3),(3,2)\} .
$$

It is easy to see that f^{-1} - the inverse of f-is not a function because an element in the first set maps to more than one element in the second set.

To avoid the first coordinate in f^{-1} mapping to more than one element in the second set, no two elements in A should map to the same element in the second set B. That is, f must be one-toone in the first place.
Example: Let $A=\{1,2,3\}$ and $B=\{1,2,3,4\}$. Consider $f=\{(1,2),(2,3),(3,4)\}$. Observe that f is a function from A to B. It follows that

$$
f^{-1}=\{(2,1),(3,2),(4,3)\} .
$$

Now f^{-1} is a function, but not a function from B to A because $1 \in B$ maps to nothing in A.
To ensure that the first coordinate in f^{-1} map to at least one element in the second set, there should be at least one element in A that map to each element in B. That is, f must be onto in the first place.

Now we see that if f is a function from A to B, in order for f^{-1} to be a function, f must be one-to-one. In order for f^{-1} to be a function from B to A, f must be one-to-one and onto. This leads to the following theorem, which we state here without a proof.
Theorem: Let $f: A \rightarrow B . f^{-1}$ is a function from B to A if and only if f is one-to-one and onto.

3 Example

Prove that if $f: A \rightarrow B$ is a bijection, then $f^{-1}: B \rightarrow A$ is also a bijection.
Proof: We need to show that f^{-1} is a function from B to A that is a bijection. That is, we need to show that

1. f^{-1} is a function from B to A,
2. f^{-1} is one-to-one, and
3. f^{-1} is onto.

To prove 1 , observe that by the theorem stated above, since f is a bijection, f^{-1} is a function from B to A, and we are done for this.

To prove 2 , we need to show that for any elements $b_{1}, b_{2} \in B$ and $a \in A$, if $\left(b_{1}, a\right) \in f^{-1}$ and $\left(b_{2}, a\right) \in f^{-1}$, then $b_{1}=b_{2}$. That is, by the definition of the inverse of a function, for every
$a \in A$ and any elements $b_{1}, b_{2} \in B$, if $\left(a, b_{1}\right) \in f$ and $\left(a, b_{2}\right) \in f$. But this is exactly property 2 in the definition of a function. Since f is a function, f has this property, and f^{-1} is one-to-one as desired.

To prove 3, we need to show that for any element $a \in A$, there is an element $b \in B$ such that $(b, a) \in f^{-1}$. That is, by the definition of the inverse of a function, for any element $a \in A$, there is an element $b \in B$ such that $(a, b) \in f$. Since f is a function, it has all the three properties in the definition of a function. But the previous statement is exactly property 3 . Therefore, f^{-1} is onto, as required.

Finally, since we have proven all the three cases, we conclude that if $f: A \rightarrow B$ is a bijection, then $f^{-1}: B \rightarrow A$ is also a bijection.

