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In this course we will be, and have been, proving many statements. One problem that one who
just begins to learn how to prove is that one does not know where to start. This guide should give
you some clues about how you tackle some particular kinds of proofs, step by step.

1 Know What You Want To Prove
First of all, you need to know what result you want to obtain at the end of the proof. Though this
comes at the end of the proof, it is the first thing you need to keep in mind all the time when writing
the proof so you don’t digress on the way from the beginning to the end. For example, referring to
Exercise 9.6 in Homework 2, define

A = {x ∈ Z : a | x}

and
B = {x ∈ Z : b | x}.

Prove that if b | a, then A ⊆ B.
Note that this is only one part of the question; there is another but we will not talk about it for

now.
So, what do you want to prove in this case? The answer seems obvious: Prove that A ⊆ B.

What this means is that you should try to think about proving that one set is a subset of another
right away.

2 Unravel the Definition
Once you know the goal, try to extract as much information as you can from it. Usually, your goal
will be short. As in the previous example (that will be used throughout this document), your goal
is to show that A ⊆ B. What does this mean? Now you probably want to consider the definition
of subset: A is a subset of B if for every element x in A, x is also an element in B.

Once you can expand what you have, you had better not forget it. Write it down! This is usually
the first sentence in your proof. So, you write

To prove that A ⊆ B, we need to show that for all x ∈ A, x ∈ B.

Now look at what you wrote. Can you expand more? In some cases, you can; in others, you
cannot. If you cannot expand the statement more, that is the best you can do at this point, so skip
to the next step. For our example, however, you can. We need to show that for every element x in
A, x is also an element of B. So, no matter how we pick an element in A, that element should be
in B. This is what we need to show for the moment. Here comes the second sentence in the proof:

Let x be an arbitrary element in A.
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Look again. What does it mean for an element to be in A? By the definition of A, x ∈ A if
a | x . So, now we know that a | x , and what should we do next? Expand it! Here come the next
sentences:

Since x ∈ A, a | x . By the definition of divisibility, there exists an integer k such
that ak = x .

One thing to note: The book uses letter c instead of k. Why doesn’t it matter? If you try to
change k to c, you will not alter the meaning of the statement in any way. We call this kind of
variable a dummy variable. You can use any letter, as long as it does not conflict with the letters
already in the statement.

At this point you probably agree that we cannot do better by just expanding statements. Here
is where this step ends. As you see, we already have several lines of proof by just expanding what
we know.

3 Utilize Other Information
Once you get stuck, you should seek other information provided to you. In our example, you see
the condition “if b | a.” This should be a good place to use it. Again, expand the information as
much as you can. The next statements follow:

By assumption, b | a. By the definition of divisibility, there exists an integer `
such that b` = a.

Stop! Before you go on, make sure that you did not introduce any variables already in use. In
this case, introducing k again will lead you to trouble. Use something else. When you are certain
that you did not make this simple mistake, proceed.

Stop! What? We have the statement, “If b | a, then A ⊆ B,” but why didn’t we use the fact
that b | a in the first place–at the beginning? The first proof you learned in this course does use
the given fact in the first sentence, but not this proof. The reason is that the information given in
the “if” part of the statement is the assumption that should hold true for this statement. Note the
period at the end of the last statement: It says that the assumption is true at any time in the proof.
Therefore, you are allowed use this assumption at any point in the proof, not just at the beginning.
The first proof you learned happens to use the assumption at the beginning, but many other proofs
use it somewhere on the way. Our example uses it right at the middle. This is a crucial point. Don’t
go on to the next section if you don’t understand this paragraph.

4 Connect the Logic
Now that we have utilized all the tools, it is time to put them together. Let’s summarize what we
have so far:

To prove that A ⊆ B, we need to show that for all x ∈ A, x ∈ B. Let x be an
arbitrary element in A. Since x ∈ A, a | x . By the definition of divisibility, there exists
an integer k such that ak = x . By assumption, b | a. By the definition of divisibility,
there exists an integer ` such that b` = a.
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So, we know that ak = x and b` = a. Let’s substitute b` in the first statement and obtain

b`k = x .

And let’s write that down:

Hence, there exist integers k and ` such that b`k = x .

This is the crux of the proof. The hardest part is connecting one end to the other. Most people
will get stuck at this point because they have no clue where to go next. Don’t worry. It comes with
practice. The more you practice, the more you are able to see which way you should go.

5 Proceed To the Goal
The logic part is like the climax of a mountain. When we unraveled the definition, we climb the
mountain. Once we reached the climax, we try to go down. If you have a hiking experience,
going down is just as difficult as climbing up. Being careless will pull you down too fast and quite
often will result in you being on the ground, sometimes rolling down. Same here. We need to
be as careful as when we start the proof. And why are we talking about climbing up and down?
Because the two processes are just (quite) the reverse of each other. For the up part, we unravel the
definition, i.e., use the longhand version of a shorthand version. Now that we have the longhand
version and are going down, let’s roll back and use the shorthand version.

So, we need to show, in the end, that x ∈ B. This means that, by the definition of B, b | x .
By the definition of divisibility, there exists an integer m such that bm = x . Wait a second. We
already have b`k = x . So, if we just let m equal `k, then we should be in a good shape. Let’s do
that and finish the proof:

Let m = `k. Then there exists an integer m such that bm = x . By the definition of
divisibility, b | x . By the definition of B, this means that x ∈ B.

Notice that the quotation just states the reverse of what we have right before the quotation.
Looks like we are done, but the final step is to recognize our goal: A ⊆ B. Here comes the

summary of the proof at the end:

Since we have shown that for any element x in A, x ∈ B, we have shown that
A ⊆ B, as required.

And we are done.
Here is the full proof of the statement “If b | a, then A ⊆ B:”

To prove that A ⊆ B, we need to show that for all x ∈ A, x ∈ B. Let x be an
arbitrary element in A. Since x ∈ A, a | x . By the definition of divisibility, there exists
an integer k such that ak = x . By assumption, b | a. By the definition of divisibility,
there exists an integer ` such that b` = a. Hence, there exist integers k and ` such
that b`k = x . Let m = `k. Then there exists an integer m such that bm = x . By the
definition of divisibility, b | x . By the definition of B, this means that x ∈ B. Since
we have shown that for any element x in A, x ∈ B, we have shown that A ⊆ B, as
required. �

CIS260-201/204 Spring 2008 3/4 How To Begin a Proof



6 Another Example
Now we want to prove the converse of the last statement: If A ⊆ B, then b | a. First, the goal is to
prove that b | a. The assumption we have is that A ⊆ B, i.e., if we know that an element is in A,
that element is in B for sure.

What does it mean for b | a? You might be tempted to go back to the definition of divisibility
and say that there must exist an integer k such that bk = a. But look around. Do we have any
other definition in hand? Given with the statement are the definitions of A and B. Let’s remind
ourselves of those definitions:

A = {x ∈ Z : a | x}

and
B = {x ∈ Z : b | x}.

So, the definition of B looks close to our goal. Let’s think about it. If we want to show that
b | a, we can just show that a ∈ B and be done in this case. What else do we know? The
assumption. So, going further, if we can just show that a ∈ A, then by assumption, a ∈ B, and by
the definition of B, b | a. Now our goal comes down to showing that a ∈ A.

What does it mean for a ∈ A? By the definition of A, a must divide a. Now, we just need to
show that a | a. At this point you might say that, well, it’s just true that any integer divides itself.
If you are convinced, that’s fine. If not, there is of course one other argument, using the definition
of divisibility. If a | a, there exists an integer k such that ak = a. Don’t confuse this k with the
k above. The previous k was not used in any way, so we can use it here. What is this k? Now it
should be obvious to you that k = 1.

From the whole argument, we should be able to complete the proof now. Let’s do it.

In order to show that b | a, it suffices to show that a ∈ B. First, a | a because there
exists an integer, namely 1, such that a · 1 = a. By the definition of A, a ∈ A. By
assumption, A ⊆ B. Since a ∈ A, a ∈ B. By the definition of B, b | a, as required. �
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