CIS121-204-Fall 2007
 Lab 7 Solution
 Tuesday, October 30

Appending Two Lists

Recall that $\mathbf{s} \mathbf{1}$ has size \boldsymbol{m} and $\mathbf{s} \mathbf{2}$ has size \mathbf{n}. We assume that ArrayList is never full. Otherwise, we can use amortized analysis to derive the following running time; instead of the worst-case running time it will be amortized running time.

Approach 1

```
01 public static <E> List<E> append1(List<E> s1, List<E> s2)
02 {
List<E> l = new ArrayList(); // or new LinkedList();
04
05 for (int i=0; i<sl.size(); i++)
06 l.add(l.size(), s1.get(i)); // copy s1 into l
07
08
09
10
11 return l;
12 }
```

First we analyze line 6. There are three operations done in this line:

- 1.size (): [1] This operation takes $O(1)$ in all implementations.
- s1.get (i): [2] This operation takes O (1) in ArrayList implementation and $O(i)$ in LinkedList implementation
- 1.add(1.size (), ©): [3] This operation takes $O(1)$ in ArrayList implementation, $O(1)$ in LinkedList implementation with a link to the last element, and $O(i)$ in LinkedList implementation without the link.

So, the for loop in lines 5-6 runs m times, each time it takes [1] + [2] + [3], total of $O(m)$ in ArrayList, $O\left(m^{2}\right)$ in LinkedList with the link, and $O\left(m^{2}\right)$ in LinkedList without the link.

Now we analyze line 9 . First of all note that 1 has size m before entering the loop in line 8. There are three operations done in this line:

- 1.size (): [1] This operation takes $O(1)$ in all implementations.
- s2.get (i): [2] This operation takes O (1) in ArrayList implementation and $O(i)$ in LinkedList implementation
- 1.add (1.size (), 0): [3] This operation takes $O(1)$ in ArrayList implementation, $O(1)$ in LinkedList implementation with a link to the last element, and $O(m+i)$ in LinkedList implementation without the link.

So, the for loop in lines 8-9 runs n times, each time it takes [1] + [2] + [3], total of $O(n)$ in ArrayList, $O\left(n^{2}\right)$ in LinkedList with the link, and $O\left(m n+n^{2}\right)$ in LinkedList without the link.

Summarizing,

- append1 () runs in $O(m+n)$ in ArrayList implementation.
- append1 () runs in $O\left(m^{2}+n^{2}\right)$ in LinkedList implementation with a link to the last element.
- append1 () runs in $O\left(m^{2}+m n+n^{2}\right)=O\left(m^{2}+n^{2}\right)$ (why?) in LinkedList implementation without a link to the last element.

Approach 2

```
01 public static <E> List<E> append2(List<E> s1, List<E> s2)
02 {
03 if (s2.size() == 0) // test if second list is empty
                return s1;
    else {
        E O = s2.remove(s2.size()-1); // last of s2
        List<E> l = append2(s1, s2); // recursive call with smaller s2
        l.add(l.size(),0); // last of s2 is added after the recursive call
        return l;
    }
    }
```

Let $T(i, j)$ be the time to append $\mathbf{s} 1$ of size i and $\mathbf{s} \mathbf{2}$ of size j. We want to calculate $T(m, n)$. First of all, note that $T(i, 0)=O(1)$ for all i. Otherwise, we have

$$
T(i, j)=[6]+T(i, j-1)+[8],
$$

where

- [6] is the running time of line 6 , which is $O(1)$ for ArrayList, $O(1)$ for LinkedList with a link to the last element, and $O(j)$ for LinkedList without the link.
- [8] is the running time of line 8 , which is $O(1)$ for ArrayList, $O(1)$ for LinkedList with a link to the last element, and $O(i+j-1)=O(i+j)$ for LinkedList without the link.

Hence,

- For ArrayList implementation,

$$
\begin{aligned}
T(m, n) & =T(m, n-1)+O(1) \\
T(m, n-1) & =T(m, n-2)+O(1) \\
& \vdots \\
T(m, 1) & =T(m, 0)+O(1)=O(1) .
\end{aligned}
$$

Hence, $T(m, n)=O(n)$.

- For LinkedList implementation with a link to the last element,

$$
T(m, n)=T(m, n-1)+O(1) .
$$

Hence, $T(m, n)=O(n)$.

- For LinkedList implementation without a link to the last element,

$$
\begin{aligned}
T(m, n) & =T(m, n-1)+O(n+(m+n))=T(m, n-1)+O(m+n) \\
T(m, n-1) & =T(m, n-2)+O(m+n-1) \\
T(m, n-2) & =T(m, n-3)+O(m+n-2) \\
& \vdots \\
T(m, 1) & =T(m, 0)+O(m+1)=O(m+1) .
\end{aligned}
$$

Hence, $T(m, n)=O\left(m n+n^{2}\right)=O\left(m^{2}+n^{2}\right)($ why? $)$.
Summarizing,

- append2() runs in $O(n)$ in ArrayList implementation.
- append2() runs in $O(n)$ in LinkedList implementation with a link to the last element.
- append2 () runs in $O\left(m^{2}+n^{2}\right)$ in LinkedList implementation without a link to the last element.

Approach 3

```
01 public static <E> List<E> append3(List<E> s1, List<E> s2)
02 {
if (s2.size() == 0) // test if second list is empty
        return s1;
        else {
        s1.add(s1.size(),s2.remove(0));
        return append3(s1, s2); // recursive call with smaller s2
        }
        }
```

Let $T(i, j)$ be the time to append $\mathbf{s} 1$ of size i and $\mathbf{s} 2$ of size j. We want to calculate $T(m, n)$. First of all, note that $T(i, 0)=O(1)$ for all i. Otherwise, we have

$$
T(i, j)=[6]+T(i, j-1)
$$

where [6] is the running time of line 6 , which contain three operations:

- s1.size() : [1] This operation takes $O(1)$ in all implementations.
- s2.remove (0): [2] This operation takes $O(j)$ in ArrayList implementation and $O(1)$ inLinkedList implementation
- s1.add(s1.size(), o): [3] This operation takes $O(1)$ in ArrayList implementation, O (1) in LinkedList implementation with a link to the last element, and $O(i)$ in LinkedList implementation without the link.

Hence, $[6]=[1]+[2]+[3]$. Now,

- For ArrayList implementation,

$$
\begin{aligned}
T(m, n) & =T(m+1, n-1)+O(n) \\
T(m+1, n-1) & =T(m+2, n-2)+O(n-1) \\
& \vdots \\
T(m+n-1,1) & =T(m+n, 0)+O(1)=O(1)
\end{aligned}
$$

Hence, $T(m, n)=O\left(n^{2}\right)$.

- For LinkedList implementation with a link to the last element,

$$
\begin{aligned}
T(m, n) & =T(m+1, n-1)+O(1) \\
T(m+1, n-1) & =T(m+2, n-2)+O(1) \\
& \vdots \\
T(m+n-1,1) & =T(m+n, 0)+O(1)=O(1)
\end{aligned}
$$

Hence, $T(m, n)=O(n)$.

- For LinkedList implementation without a link to the last element,

$$
\begin{aligned}
T(m, n) & =T(m+1, n-1)+O(m) \\
T(m+1, n-1) & =T(m+2, n-2)+O(m+1) \\
T(m+2, n-2) & =T(m+3, n-3)+O(m+2) \\
& \vdots \\
T(m+n-1,1) & =T(m+n, 0)+O(m+n+1)=O(m+n-1) .
\end{aligned}
$$

Hence, $T(m, n)=O\left(m n+n^{2}\right)=O\left(m^{2}+n^{2}\right)($ why? $)$.
Summarizing,

- append3 () runs in $O\left(n^{2}\right)$ in ArrayList implementation.
- append3() runs in $O(n)$ in LinkedList implementation with a link to the last element.
- append3 () runs in $O\left(m^{2}+n^{2}\right)$ in LinkedList implementation without a link to the last element.

Some Things to Note

- For all the three approaches above, if $\mathbf{s} 1==\mathbf{s} 2$, no approaches give a correct result. Try examining the code and see what went wrong. What are the results of those erroneous executions.
- append3 () can be implemented without recursion. How?
- Try implementing append () that works for two identical lists.

Implementing a Stack Using Queues

Yes, we can do that, but how? If you have a solution that you would like to discuss, feel free to come talk to me.

Implementing a Queue Using Stacks

Again, yes, but how? Again, feel free to discuss with me if you think you have a solution.

