
CIS121-204–Fall 2007
Lab 7 Solution

Tuesday, October 30

Appending Two Lists
Recall that s1 has size m and s2 has size n. We assume that ArrayList is never full. Otherwise, we
can use amortized analysis to derive the following running time; instead of the worst-case running
time it will be amortized running time.

Approach 1
01 public static <E> List<E> append1(List<E> s1, List<E> s2)
02 {
03 List<E> l = new ArrayList(); // or new LinkedList();
04
05 for (int i=0; i<s1.size(); i++)
06 l.add(l.size(), s1.get(i)); // copy s1 into l
07
08 for (int i=0; i<s2.size(); i++)
09 l.add(l.size(), s2.get(i)); // copy s2 into l
10
11 return l;
12 }

First we analyze line 6. There are three operations done in this line:

• l.size(): [1] This operation takes O(1) in all implementations.

• s1.get(i): [2] This operation takes O(1) in ArrayList implementation and O(i) in
LinkedList implementation

• l.add(l.size(),o): [3] This operation takes O(1) in ArrayList implementation, O(1)
in LinkedList implementation with a link to the last element, and O(i) in LinkedList

implementation without the link.

So, the for loop in lines 5-6 runs m times, each time it takes [1] + [2] + [3], total of O(m) in
ArrayList, O(m2) in LinkedList with the link, and O(m2) in LinkedList without the link.

Now we analyze line 9. First of all note that l has size m before entering the loop in line 8.
There are three operations done in this line:

• l.size(): [1] This operation takes O(1) in all implementations.

• s2.get(i): [2] This operation takes O(1) in ArrayList implementation and O(i) in
LinkedList implementation

• l.add(l.size(),o): [3] This operation takes O(1) in ArrayList implementation, O(1) in
LinkedList implementation with a link to the last element, and O(m + i) in LinkedList

implementation without the link.

CIS121-204 Fall 2007 1/5 Lab 7 Solution

So, the for loop in lines 8-9 runs n times, each time it takes [1] + [2] + [3], total of O(n) in
ArrayList, O(n2) in LinkedList with the link, and O(mn+n2) in LinkedList without the link.

Summarizing,

• append1() runs in O(m + n) in ArrayList implementation.

• append1() runs in O(m2
+n2) in LinkedList implementation with a link to the last element.

• append1() runs in O(m2
+mn+n2) = O(m2

+n2) (why?) in LinkedList implementation
without a link to the last element.

Approach 2
01 public static <E> List<E> append2(List<E> s1, List<E> s2)
02 {
03 if (s2.size() == 0) // test if second list is empty
04 return s1;
05 else {
06 E o = s2.remove(s2.size()-1); // last of s2
07 List<E> l = append2(s1, s2); // recursive call with smaller s2
08 l.add(l.size(),o); // last of s2 is added after the recursive call
09 return l;
10 }
11 }

Let T (i, j) be the time to append s1 of size i and s2 of size j . We want to calculate T (m, n). First
of all, note that T (i, 0) = O(1) for all i . Otherwise, we have

T (i, j) = [6]+ T (i, j − 1)+ [8],

where

• [6] is the running time of line 6, which is O(1) for ArrayList, O(1) for LinkedList with a
link to the last element, and O(j) for LinkedList without the link.

• [8] is the running time of line 8, which is O(1) for ArrayList, O(1) for LinkedList with a
link to the last element, and O(i + j − 1) = O(i + j) for LinkedList without the link.

Hence,

• For ArrayList implementation,

T (m, n) = T (m, n − 1)+ O(1)

T (m, n − 1) = T (m, n − 2)+ O(1)
...

T (m, 1) = T (m, 0)+ O(1) = O(1).

Hence, T (m, n) = O(n).

CIS121-204 Fall 2007 2/5 Lab 7 Solution

• For LinkedList implementation with a link to the last element,

T (m, n) = T (m, n − 1)+ O(1).

Hence, T (m, n) = O(n).

• For LinkedList implementation without a link to the last element,

T (m, n) = T (m, n − 1)+ O(n + (m + n)) = T (m, n − 1)+ O(m + n)

T (m, n − 1) = T (m, n − 2)+ O(m + n − 1)

T (m, n − 2) = T (m, n − 3)+ O(m + n − 2)
...

T (m, 1) = T (m, 0)+ O(m + 1) = O(m + 1).

Hence, T (m, n) = O(mn + n2) = O(m2
+ n2) (why?).

Summarizing,

• append2() runs in O(n) in ArrayList implementation.

• append2() runs in O(n) in LinkedList implementation with a link to the last element.

• append2() runs in O(m2
+ n2) in LinkedList implementation without a link to the last

element.

Approach 3
01 public static <E> List<E> append3(List<E> s1, List<E> s2)
02 {
03 if (s2.size() == 0) // test if second list is empty
04 return s1;
05 else {
06 s1.add(s1.size(),s2.remove(0));
07 return append3(s1, s2); // recursive call with smaller s2
08 }
09 }

Let T (i, j) be the time to append s1 of size i and s2 of size j . We want to calculate T (m, n). First
of all, note that T (i, 0) = O(1) for all i . Otherwise, we have

T (i, j) = [6]+ T (i, j − 1),

where [6] is the running time of line 6, which contain three operations:

• s1.size(): [1] This operation takes O(1) in all implementations.

• s2.remove(0): [2] This operation takes O(j) in ArrayList implementation and O(1)
inLinkedList implementation

CIS121-204 Fall 2007 3/5 Lab 7 Solution

• s1.add(s1.size(),o): [3] This operation takes O(1) in ArrayList implementation, O(1)
in LinkedList implementation with a link to the last element, and O(i) in LinkedList

implementation without the link.

Hence, [6] = [1]+ [2]+ [3]. Now,

• For ArrayList implementation,

T (m, n) = T (m + 1, n − 1)+ O(n)

T (m + 1, n − 1) = T (m + 2, n − 2)+ O(n − 1)
...

T (m + n − 1, 1) = T (m + n, 0)+ O(1) = O(1).

Hence, T (m, n) = O(n2).

• For LinkedList implementation with a link to the last element,

T (m, n) = T (m + 1, n − 1)+ O(1)

T (m + 1, n − 1) = T (m + 2, n − 2)+ O(1)
...

T (m + n − 1, 1) = T (m + n, 0)+ O(1) = O(1).

Hence, T (m, n) = O(n).

• For LinkedList implementation without a link to the last element,

T (m, n) = T (m + 1, n − 1)+ O(m)

T (m + 1, n − 1) = T (m + 2, n − 2)+ O(m + 1)

T (m + 2, n − 2) = T (m + 3, n − 3)+ O(m + 2)
...

T (m + n − 1, 1) = T (m + n, 0)+ O(m + n + 1) = O(m + n − 1).

Hence, T (m, n) = O(mn + n2) = O(m2
+ n2) (why?).

Summarizing,

• append3() runs in O(n2) in ArrayList implementation.

• append3() runs in O(n) in LinkedList implementation with a link to the last element.

• append3() runs in O(m2
+ n2) in LinkedList implementation without a link to the last

element.

CIS121-204 Fall 2007 4/5 Lab 7 Solution

Some Things to Note
• For all the three approaches above, if s1==s2, no approaches give a correct result. Try

examining the code and see what went wrong. What are the results of those erroneous
executions.

• append3() can be implemented without recursion. How?

• Try implementing append() that works for two identical lists.

Implementing a Stack Using Queues
Yes, we can do that, but how? If you have a solution that you would like to discuss, feel free to
come talk to me.

Implementing a Queue Using Stacks
Again, yes, but how? Again, feel free to discuss with me if you think you have a solution.

CIS121-204 Fall 2007 5/5 Lab 7 Solution

