
CIS121-204 – Fall 2007
Lab 2 Solution

Tuesday, September 18

Recall that when we analyze running time we analyze the worst case.
Count the exact number of steps for the following snips of pseudo-code and give a big-oh analysis.

Prints a square of ’*’ of size n+1.

PRINTSQUARE(n)

1 for i ← 0 to n � 1 initial assignment; n + 1 increments; n + 2 comparisons
2 do for j ← 0 to n � 1 initial assignment; n + 1 increments; n + 2 comparisons
3 do PRINT ∗ � 1 operation
4 PRINT linebreak � 1 operation

For each inner for loop, line 3 executes 1 operation for n + 1 times. Hence, the number of steps
for one inner for loop is 1 + 2(n + 1) + (n + 2) + (n + 1) = 4n + 6. Note that each increment
costs 2 steps: an addition and an assignment.

For each outer for loop, the inner for loop executes 4n + 6 steps. Line 4 execute 1 operation.
Hence, there are 4n + 7 steps for each outer loop. The outer for loop executes n + 1 times, so the
total number of steps executed is (n+1)(4n+7)+1+2(n+1)+(n+2) = 4n2

+11n+7+3n+5 =
4n2
+ 14n + 12. Therefore, PRINTSQUARE runs in O(n2). 2

Prints a triangle of ’*’ of height n+1.

PRINTTRIANGLE(n)

1 for i ← 0 to n � 1 initial assignment; n + 1 increments; n + 2 comparisons
2 do for j ← 0 to i � 1 initial assignment; i + 1 increments; i + 2 comparisons
3 do PRINT ∗ � 1 operation
4 PRINT linebreak � 1 operation

For each inner for loop, line 3 executes 1 operation for i + 1 times. Hence, the number of steps for
one inner for loop is 1+ 2(i + 1)+ (i + 2)+ (i + 1) = 4i + 6.

When the outer for loop takes on value i , the inner for loop executes 4i + 6 steps. Line 4
execute 1 operation. Hence, there are 4i + 7 steps for each outer loop. The outer for loop executes
n + 1 times, so the total number of steps executed is(n∑

i=0

4i + 7

)
+ 1+ 2(n + 1)+ (n + 2) =

(
4

n∑
i=0

i

)
+

(n∑
i=0

7

)
+ 1+ 2(n + 1)+ (n + 2)

= 2n(n + 1)+ 7(n + 1)+ 3n + 5
= 2n2

+ 2n + 7n + 7+ 3n + 5
= 2n2

+ 12n + 12.

Therefore, PRINTTRIANGLE runs in O(n2). 2

CIS121-204 Fall 2007 1/3 Lab 2 Solution

Counts the number of positive integers in array A with n + 1 elements.

COUNTPOSITIVE(A, n)

1 count ← 0 � 1 assignment
2 for i ← 0 to n � 1 initial assignment; n + 1 increments; n + 2 comparisons
3 do if A[i] > 0 � 1 array indexing; 1 comparison
4 then count ← count + 1 � 1 arithmetic operation; 1 assignment
5 PRINT count � 1 operation

Since this code fragment contains an if statement, which might evaluate to true or false, we need to
consider the worst case possible. In this case, the worst case occurs when all integers in the array
A are positive.

Hence, for each for loop, line 3 performs 2 steps and, assuming that the if statement evaluates
to TRUE, line 4 executes for 2 steps. Thus, the number of steps for one for loop is 2+ 2 = 4. The
for loop executes n + 1 times, so the number of steps executed by the for loop is 4(n + 1)+ 1+
2(n + 1)+ (n + 2) = 7n + 9.

Finally, line 1 and 5 execute 2 steps. Therefore, the total number of steps executed is 7n + 11.
That is, COUNTPOSITIVE runs in O(n). 2

Assume that the function MIN(a, b) is O(1).

WEIRD(A, n)

1 count ← 0 � 1 assignment
2 for i ← 0 to n � 1 initial assignment; n + 1 increments; n + 2 comparisons
3 do if A[i] ≥ 0 � 1 array indexing; 1 comparison
4 then count ← count + 1 � 1 arithmetic operation; 1 assignment
5 else for j ← 0 to MIN(A[i], n)

� 1 initial assignment; 0 increments
� 1 array indexing; 1 procedure call; 1 comparison

6 do PRINT ∗ � 1 operation
7 j ← j + 1 � 1 arithmetic operation; 1 assignment
8 PRINT count � 1 operation

Again, we consider the worst case. In this problem it is unclear which case of the if statement
gives the worst case, so we will consider both cases. In case that the if statement evaluates to
TRUE, line 4 executes 2 steps. Otherwise, A[i] must be negative, and the value of MIN(A[i], n) is
always A[i]. Hence, the for loop never executes, but the overhead of setting up the loop is 4 steps:
the initial assignment, the array indexing, the MIN procedure call, and the comparison between j
and the value returned from the MIN procedure. Thus, the else case executes for a more number of
steps, so we will assume that in the worse case, the array A contains all negative integers. Line 3
performs 2 steps for each iteration. The number of steps in each outer for loop is 4+ 2 = 6.

The outer for loop executes n + 1 times, so the number of steps executed by the outer for loop
is 6(n + 1)+ 1+ 2(n + 1)+ (n + 2) = 9n + 11. Finally, line 1 and 8 execute 2 steps. Therefore,
the total number of steps executed is 9n + 13. That is, WEIRD runs in O(n). 2

CIS121-204 Fall 2007 2/3 Lab 2 Solution

Assume that the function MOD(a, b) is O(1). Note that MOD(a,b) returns the remainder of the
division of a by b.

WEIRD2(n)

1 i ← 0 � 1 assignment
2 while i < n � n + 1 comparisons
3 do if MOD(i, 2) = 0 � 1 procedure call; 1 comparison
4 then for j ← 0 to n � 1 initial assignment; n + 1 increments; n + 2 comparisons
5 do PRINT ∗ � 1 operation
6 i ← i + 1 � 1 arithmetic operation; 1 assignment

The for loop with 1 operation executes n + 1 times. The number of steps executed by each for
loop is (n+ 1)+ 1+ 2(n+ 1)+ (n+ 2) = 4n+ 6. Now, the for loop is executed only if i is even.
If n is even, the if statement evaluates to TRUE n/2 times. If n is odd, the if statement evaluates
to TRUE (n + 1)/2 times. Therefore, the worst case occurs when n is odd. Thus, each while loop
performs n+1

2 (̇4n + 6+ 2+ 2) = 2n2
+ 7n + 5 steps. Hence, the number of steps executed by the

while loop is 2n2
+ 7n + 5+ (n + 1) = 2n2

+ 8n + 6. Finally, the total number of steps executed
is 2n2

+ 8n + 6+ 1 = 2n2
+ 8n + 7. That is, WEIRD2 runs in O(n2). 2

WEIRD3(n)

1 i ← 1 � 1 assignment
2 while i < n � n

2 + 1 comparisons
3 do if MOD(i, 2) = 0 � 1 procedure call; 1 comparison
4 then for j ← 0 to n � 1 initial assignment; n + 1 increments; n + 2 comparisons
5 do PRINT ∗ � 1 operation
6 i ← i + 2 � 1 arithmetic operation; 1 assignment

This code fragment is quite similar to WEIRD2 except on line 1 and line 6, where i starts at 1 and
gets incremented by 2 instead of 1. That is, i will always be odd, and so the if statement always
evaluates to FALSE. Hence, in one iteration of while loop, there are 4 steps to be executed. The
while loops executes n/2 times because i is incremented by 2. To be precise, if n is even, the loop
executes n/2 times; if n is odd, the loop executes (n − 1)/2 times. We take the former case as the
worst case. Therefore, the number of steps performed by the while loop is 2n+n/2+1 = 5n/2+1.
Finally, the total number of steps performed is 5n/2+ 1+ 1 = 5n/2+ 2. That is, WEIRD3 runs in
O(n). 2

CIS121-204 Fall 2007 3/3 Lab 2 Solution

