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Abstract
Pattern matching, an important feature of functional languages, is
in conflict with data abstraction and extensibility, which are central
to object-oriented languages. Modal abstraction offers an integra-
tion of deep pattern matching and convenient iteration abstractions
into an object-oriented setting; however, because of data abstrac-
tion, it is challenging for a compiler to statically verify properties
such as exhaustiveness. In this work, we extend modal abstraction
in the JMatch language to support static, modular reasoning about
exhaustiveness and redundancy. New matching specifications al-
low these properties to be checked using an SMT solver. We also
introduce expressive pattern-matching constructs. Our evaluation
shows that these new features enable more concise code and that
the performance of checking exhaustiveness and redundancy is ac-
ceptable.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Patterns, Polymor-
phism; D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; F.3.1 [Logics and Meanings of Programs]: Specify-
ing and Verifying and Reasoning about Programs—Pre- and post-
conditions, Mechanical verification

General Terms Design, Verification, Languages

Keywords JMatch; pattern matching; named constructor; equality
constructor; matching specification; exhaustiveness; redundancy;
modal abstraction; Java; data abstraction; subtyping

1. Introduction
Despite being an important feature of modern functional program-
ming languages, pattern matching has not been adopted by most
object-oriented languages. Data abstraction and extensibility, both
primary goals of object-oriented languages, conflict with pattern
matching. This work explores a language design for integrating pat-
tern matching with object-oriented programming.

The following is a simple implementation of natural numbers in
OCaml. The algebraic data type nat, with two constructors Zero
and Succ, represents a natural number; the recursive plus function
adds two naturals by matching them with one of three patterns.

type nat = Zero | Succ of nat
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let rec plus m n =
match (m, n) with
(Zero, x)

| (x, Zero) -> x
| (Succ m’, _) -> plus m’ (Succ n)

This example illustrates two benefits of pattern matching in ML
and other functional programming languages such as Haskell.

The first benefit is that patterns serve a dual role that enables al-
gebraic reasoning and results in concise, intuitive code. A construc-
tor such as Succ is also a pattern that matches the values produced
by that constructor. Patterns can be nested to match complex values
in a natural way, so a pattern like Succ(Succ(n))matches exactly
the values constructed by expressions using the same syntax.

The second benefit is that pattern matching helps catch common
programming errors. Patterns in a match expression can be checked
to ensure that they are exhaustive and not redundant: that all possi-
ble values are matched by some pattern, and that every pattern can
match some value. Without such checks, if the programmer for-
got the first of the three cases above, the program could crash with
an exception. With such checks, the compiler would warn that no
cases match values of the form (Zero, Succ _).

Relying on access to the concrete representation of data, how-
ever, makes the ML-style pattern matching inimical to data abstrac-
tion [30]. A value produced by one module can only be matched
by patterns in another module if the second module knows the un-
derlying representation of the value. Agreement on the concrete
representation tightly couples the two modules in a way usually
considered undesirable for large software systems. For example,
we might initially implement natural numbers as above, then later
want to change the representation to be an int. This change is not
possible in ML without breaking client code.

To make pattern matching compatible with data abstraction,
prior work has developed pattern-matching constructs that can be
implemented by arbitrary code. Examples of this approach include
views [30], extractors [5], and active patterns [29]. These mech-
anisms permit matching on deep patterns over abstract data, but
sacrifice other benefits of algebraic pattern matching. There is no
check that patterns are consistent with their corresponding con-
structors, so algebraic reasoning is weakened. Further, data abstrac-
tion interferes with checking exhaustiveness and redundancy.

The JMatch language [19] introduced another way to harmo-
niously integrate pattern matching into object-oriented languages,
through modal abstractions that support multiple directions of
computation. Modal abstractions allow a constructor and its pat-
tern to be implemented by the same invertible computation, en-
suring that they are inverses. Determining whether patterns are
exhaustive or redundant, however, remained impossible under the
data abstraction provided by JMatch. Furthermore, the added ex-
pressive power of patterns implemented by complex computations
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1 class Nat {
2 private int value;
3 private Nat(int n) returns(n)
4 ( value = n )
5 public static Nat zero() returns()
6 ( result = Nat(0) )
7 public static Nat succ(Nat n) returns(n)
8 ( result = Nat(n.value + 1) )
9 }
10 ...
11 static Nat plus(Nat m, Nat n) {
12 switch (m, n) {
13 case (zero(), Nat x):
14 case (x, zero()):
15 return x;
16 case (succ(Nat k), _):
17 return plus(k, Nat.succ(n));
18 }
19 }

Figure 1. Natural numbers with data abstraction in JMatch.

means that programmers can accidentally omit patterns more easily
than with algebraic data types.

The challenge for analysis of exhaustiveness and redundancy is
to reason statically without violating data abstraction. The main
contribution of this paper is, therefore, a way to extend modal
abstractions with concise specifications that enable static reasoning
about exhaustiveness and redundancy of pattern matching and,
more generally, about the totality of computations.

Object-oriented programming involves more than just data ab-
straction; subtyping and inheritance are key ingredients support-
ing extensibility. For extensibility, different implementations of
(subtypes of) the same interface should support the same patterns
without clients knowing which implementation has been used. We
therefore introduce named constructors that can be used as patterns
in this way. We also introduce two first-class or-patterns that gen-
eralize both data-type constructors and or-patterns in ML.

We proceed as follows. Section 2 reviews modal abstraction in
JMatch. Section 3 introduces mechanisms that improve the expres-
sive power of pattern matching and its integration with objects. Sec-
tion 4 describes new static annotations that support reasoning about
exhaustiveness and redundancy. The verification procedure is ex-
plained in Section 5. Section 6 describes our implementation of an
extended version of JMatch. Using various code examples, we eval-
uate its expressiveness, analytic power, and efficiency in Section 7.
Section 8 discusses related work, and Section 9 concludes.

2. Background
Some background will be helpful on JMatch [17, 19], an extension
to Java 1.4 that supports pattern matching and iteration through
modal abstraction.

2.1 Modal abstraction
Section 1 observed that in OCaml, natural numbers cannot sup-
port pattern matching while being represented internally with an
int. Figure 1 shows how this can be done in JMatch. The key
idea is that JMatch methods may declare multiple modes that corre-
spond to different “directions” of evaluation, analogously to pred-
icate mode declarations in the logic programming language Mer-
cury [26]. In addition to the ordinary forward mode, which acts
like a Java method, a JMatch method may also provide backward
modes which, given a desired result, compute corresponding argu-
ment values. Backward modes support pattern matching. For exam-
ple, the method succmay be used in the forward mode to compute

the successor of a number. As indicated by the clause returns(n)
on line 7, it also has a backward mode that computes the number n
for which the value given in result is the successor.

This implementation of Nat is more complex than in OCaml
because the abstract view that supports pattern matching must be
related to its concrete representation as an int. The methods of
Nat demonstrates that JMatch programs can define patterns that
both preserve data abstraction, because the field value is private,
and are also usable outside the module that defines them. Lines 11–
19 show how the backward modes of these methods can be used to
implement the method plus similarly to the earlier OCaml code.

In general, a JMatch method implements a relation over its
arguments and its result. Each of its modes is a different way of
exploring the relation. For example, the succ operation is a binary
relation on Nat: a subset of Nat � Nat. In each mode, some of the
arguments or the return value are knowns supplied by the caller,
and the others are unknowns to be solved for.

Individual method modes may be implemented by imperative,
Java-like code, but one single declarative-style implementation
of multiple modes is often more concise. As in each of Nat’s
methods in Figure 1, a declarative method implementation is a
boolean formula placed inside parentheses, directly expressing
the implemented relation. For example, the equation result =
Nat(n.value + 1) at line 8 exactly captures the succ relation.1
For each mode of a method, the compiler generates an impera-
tive algorithm that, given values for knowns, finds values of all
unknowns that satisfy the formula. Thus, the backward mode of-
ten comes nearly for free, unlike with related approaches such as
extractors [5].

Not only user-defined abstractions but also built-in types such
as primitive types support modal abstractions. For example, integer
operations such as + and - can solve for either of their arguments,
given a result to match against.

2.2 Iterative modes
Modes need not be functions; viewed as relations, they may be
one-to-many or many-to-many. A mode is iterative when there may
be more than one solution to the unknowns for given knowns; the
keyword iterates is used in place of returns to indicate such
a mode. For example, the contains method of the Collection
class has the signature

boolean contains(Object x) iterates(x)

meaning that its backward mode can be used to iterate over all con-
tained objects. Using iterative modes, the Java collections frame-
work could be made 35% more concise by implementing its opera-
tions, including iterators, as modes of relatively few methods [17].

2.3 Semantics and solving
The semantics of JMatch is defined as a syntax-directed, type-
preserving translation to Javayield [18], which extends Java with
coroutine methods in which control is yielded to the caller via
the yield statement, much as in languages like C#, Ruby, and,
originally, CLU [16].

JMatch supports imperative Java code, the translation of which
is relatively straightforward. The interesting parts of the translation
involve the solving of boolean formulas and pattern expressions.
JMatch considers a formula or pattern solvable when the compiler
can generate an algorithm that either finds satisfying assignments
to unknowns or determines that there are none. In the latter case,
the formula or pattern is not satisfiable but is still solvable. A
formula or pattern may also be satisfiable but not solvable if the

1 Note that the operator = is an equality test, which unambiguously sub-
sumes its usual Java role as imperative assignment.
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interface Nat {
constructor zero() returns();
constructor succ(Nat n) returns(n);
...

}

Figure 2. Natural number interface with named constructors.

1 class ZNat implements Nat {
2 int val;
3 private ZNat(int n) returns(n)
4 ( val = n && n >= 0 )
5 constructor zero() returns()
6 ( val = 0 )
7 constructor succ(Nat n) returns(n)
8 ( val >= 1 && ZNat(val - 1) = n )
9 ...
10 }
11
12 class PZero implements Nat {
13 constructor zero() returns() ( true )
14 constructor succ(Nat n) returns(n) ( false )
15 ...
16 }
17 class PSucc implements Nat {
18 Nat pred;
19 constructor zero() returns() ( false )
20 constructor succ(Nat n) returns(n) ( pred = n )
21 ...
22 }

Figure 3. Three implementations of Nat.

compiler does not know how to generate an appropriate algorithm
for determining satisfying assignments.

As an extension to Java, JMatch allows side effects, although
its new features encourage a declarative programming style. With
side effects, programmers need to reason about the order in which
computations occur. The JMatch solver therefore solves formulas
in a well-defined order that is left-to-right as much as possible.

3. Pattern-matching extensions
We extend JMatch, adding new pattern-matching constructs to bet-
ter support object-oriented programming and data abstraction and
to increase expressive power in other ways.

3.1 Named constructors
In JMatch, pattern matching using procedures is successful only if
the value being matched is either their result or one of their argu-
ments. Therefore, a JMatch procedure can successfully match on
its own receiver object (this) only if the procedure is a construc-
tor or happens to return its receiver object as the result. Since a
constructor belongs to a particular class, code using a constructor
pattern is tightly coupled to that particular implementation. This
tight coupling interferes with extensibility and code reuse.

To support implementation-oblivious pattern matching, we ex-
tend JMatch with named constructors that can pattern-match an
object whose run-time class is unknown. Named constructors have
an explicit name different from that of their class, and they can be
declared in interfaces.

For example, Figure 2 shows a Nat interface exposing two
named constructors, zero and succ. Figure 3 shows two partial
implementations of Nat. The first (ZNat) corresponds to the im-
plementation of Figure 1. The second is analogous to the OCaml

1 class ZNat { ...
2 constructor equals(Nat n)
3 ( zero() && n.zero() |
4 succ(Nat y) && n.succ(y) )
5 }
6
7 class PZero { ...
8 constructor equals(Nat n)
9 ( n.zero() )
10 }
11 class PSucc { ...
12 constructor equals(Nat n)
13 ( n.succ(pred) )
14 }

Figure 4. Equality constructors.

version and consists of two classes: PZero, representing zero, and
PSucc, representing the successor of its field pred at line 18.

Unlike ordinary constructors, a named constructor like zero
can be applied to an object x of type Nat or of any subtype of Nat. It
acts as a boolean predicate in this style of invocation. For example,
ZNat(0).zero() evaluates to true because its implementation
tests the equation val = 0. A named constructor for type T may
be invoked without an explicit receiver object when it is used to
pattern-match a value of type T . In this case, the receiver object
is the value being matched. Finally, named constructors can be
invoked to construct new objects of their class, as in the expression
ZNat.zero(). In the forward mode, the fields of this are in scope
as unknowns to be solved for either directly in the formula or via
another constructor. For example, val in the equation val = 0 at
line 6 is solved directly by assigning zero to it.

3.2 Equality constructors
As written, the implementations of Nat in Figure 3 are incomplete.
The problem is that the forward mode of succ in ZNat promises
to construct a ZNat from an arbitrary Nat predecessor n. If n is
not a ZNat, the equality test at line 8 between ZNat(val - 1) and
n will fail. We fix this by adding an operation to Nat that allows
solving for equality between objects of different classes:

constructor equals(Nat n);

Because equals is used to pattern-match on the receiver object, it
becomes a special named constructor—an equality constructor—
rather than an ordinary boolean method as in Java. If defined,
equals is used for solving equality in addition to JMatch’s default
strategy of direct assignment. The code of equals for the classes
implementing Nat is given in Figure 4.

Using equals, the equality ZNat(val - 1) = n is solved for
non-ZNat objects n by invoking ZNat.equals, defined at lines 2–
4. This method tests whether n is zero or the successor of some
number. If the former, it returns ZNat.zero; if the latter, it in-
vokes ZNat.succ recursively to retrieve the predecessor of n,
which is bound to y by the constructor invocation n.succ(y).
Operationally, ZNat’s equals and succ interoperate to find suc-
cessive predecessors until either zero or a ZNat representation (as
in PSucc.succ(ZNat(3)), which is legal!) is encountered. Once
equals converts n to a ZNat object, succ matches the internal
representation of this ZNat object with val - 1, solving for val,
which internally represents the desired successor.

3.3 Other extensions
A complete overview of the existing patterns in JMatch can be
found in Section 2.2 of the JMatch technical report [18]. We ex-
tend the language with additional operators and a new pattern that
increase expressive power:
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1 public Expr CPS(Expr e) returns(e) (
2 Var k = freshVar("k", e) &&
3 (e, result) =
4 (Var(_),
5 Lambda(k, Apply(k, e)))
6 | (Lambda(Var vl, Expr body),
7 Lambda(k,
8 Apply(k, Lambda(vl,
9 Lambda(k, Apply(CPS(body), k))))))
10 | (Apply(Expr fn, Expr arg),
11 Lambda(k, Apply(CPS(fn),
12 Lambda(f, Apply(CPS(arg),
13 Lambda(Var("v") as Var va,
14 Apply(Apply(f, va), k))))))
15 where Var f = freshVar("f", arg))
16 )

Figure 5. Invertible CPS conversion.

� JMatch already has a pattern conjunction operator called as,
which generalizes ML’s pattern operator of the same name by
requiring two arbitrary patterns to match the same value. We
add a pattern disjunction operator, #, that combines two patterns
into a single pattern that matches either or both of the two, and
solves for the same unknowns. For example, the formula int
x = y-1 # y+1 (which should be read as int x = (y-1 #
y+1)) generates the two solutions x = y-1 and x = y+1 when
solving for x, and y = x+1 and y = x-1 when solving for y.
Unlike Icon’s alternation expression [9], a match is attempted
against all alternatives even if one of them fails.
� We also add a disjoint disjunction operator, |, that behaves like
# except that the patterns must be disjoint. A pattern constructed
with this operator produces at most one solution when a value is
matched against it, unlike #. The number of solutions is impor-
tant because the pattern-matching statements require that there
be only a single solution. The compiler verifies that patterns com-
bined via | are disjoint. The formula x = 1 | 2would therefore
be legal but x = y-1 | y+1 would not if used to solve for y.
� A tuple pattern, written (p1, : : : , pn), may be used to match

multiple values at once. Tuples are not first-class values; uses of
tuple patterns are equivalent to, but often more concise than, a set
of equations expressed over the tuple components.

These new constructs add expressiveness. For example, the
JMatch 1.1.6 release [18] includes an example of invertible con-
version to continuation-passing style (CPS). The same two com-
putations, CPS conversion and its inverse, are both expressed even
more concisely in Figure 5 using the new pattern operators. In this
code, the use of tuples enables the translation rules to be expressed
essentially as inference rules. The pattern .p where f / on line 15
refines pattern p to succeed only when formula f is also satisfi-
able. The use of | ensures that CPS is one-to-one, though not total
in its backward mode. Without |, the JMatch compiler would be
unable to conclude that the three cases are disjoint and would raise
the error that CPS is not one-to-one.

4. Static annotations for exhaustiveness reasoning
Several pattern-matching forms in JMatch can benefit from veri-
fication of exhaustiveness. As we saw in Figure 1, switch state-
ments are one such form. Whether switch (e) {���������!case pi: si}
is exhaustive corresponds to (roughly) whether

n_
iD1

e D pi (1)

Nat n;
...
switch (n) {
case succ(Nat p): ...
case succ(succ(Nat pp)): ...
case zero(): ...

}

Figure 6. Redundant switch statement.

is a tautology. A second such form is the JMatch statement cond
{
�������!
(fi) {si}}, which executes the first statement si such that its

corresponding formula fi is true. For exhaustiveness, at least one
such formula must be true. A third pattern-matching form is let
f , which is equivalent to cond {(f ) {}} except that variable
bindings made in f are in scope for the remainder of the state-
ment’s block. The declaration int x = 2 is in fact syntactic sugar
for let int x = 2. Therefore, the formula f in a let statement
should always be satisfiable.

In principle, exhaustiveness checking seems simple. Reasoning
about exhaustiveness while preserving data abstraction, however,
is challenging because the client code performing pattern match-
ing is oblivious to the concrete representation (e.g., private fields)
of objects. For example, given the code in Figure 6, the compiler
does not know the implementation of succ and zero with which n
will be matched. Even if it did know, using this knowledge would
violate modularity, coupling correctness of this code to implemen-
tation choices internal to Nat. Moreover, given a value of type Nat,
the compiler may not assume that succ and zero are the only ways
to construct the value; there could be another constructor defined
in Nat that could produce the same value. As a result, the compiler
does not have enough information about the patterns to show that
disjunction (1) is a tautology.

To enable the compiler to reason modularly about exhaustive-
ness, we must expose enough information to the client about the
relation implemented by a method without exposing implementa-
tion details. Supplied with this information for the code in Figure 6,
the compiler should be able to determine that all values of type Nat
will be matched by some case. If that were not true (e.g., if the first
case were omitted), the compiler should issue a warning. Also, in
the code as written, the second case is redundant because anything
matching succ(succ(Nat pp)) must have matched succ(Nat
p). Redundant code often indicates errors in programmer’s reason-
ing; the compiler ought to report this too. At the same time, the
exposed information should let the compiler know that zero and
succ are indeed disjoint and conclude that the third case and the
first two are not redundant. Without such information, the compiler
could generate a false redundancy warning.

To support static verification of exhaustiveness and other prop-
erties, three new kinds of concise and intuitive specifications pro-
vide the missing information: class invariants, matches clauses,
and ensures clauses. As an orthogonal benefit, all of these speci-
fications can exploit the new pattern operator | to prove patterns
disjoint. We now explore these new features in more detail.

4.1 Class and interface invariants
One way to provide the information needed to determine exhaus-
tiveness is as a class or interface invariant. For example, we can
express that all instances of Nat match either zero() or succ()
by adding the following invariant to the Nat interface, using | to
assert that the two patterns are disjoint:
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1 class ZNat implements Nat {
2 int val;
3 private invariant(val >= 0);
4 private ZNat(int n) matches(n >= 0) returns(n)
5 ( val = n && n >= 0 )
6 ...
7 }

Figure 7. Private invariant and matches clause.

interface Nat {
invariant(this = zero() | succ(_));
...

}

This example invariant shows how to obtain the exhaustiveness
analysis provided by algebraic data types, while preserving data
abstraction and allowing extensibility. New implementations of the
Nat interface do not alter this invariant.

Class and interface invariants can be thought of as a kind of
boolean-valued method whose value is always asserted to be true
and whose implementation is visible to callers. Invariants may be
given visibility modifiers (public, protected, or private). To
maintain modularity, an invariant may only mention methods and
fields that are at least as visible as the invariant itself.

Invariants not publicly visible may be useful for verifying the
implementation of a class, such as the totality of the implementa-
tion of its methods. For instance, in the ZNat code of Figure 3, the
field val cannot be negative. We can add a private invariant as-
serting this constraint, as in Figure 7. This invariant supports suc-
cessful verification of the backward mode of the implementation
of the constructor ZNat(), which should be total among all ZNat
values. The invariant plus the first conjunct imply the second con-
junct, n >= 0. The private invariant also helps verify both modes
of succ().

4.2 Matches clauses
One impediment to checking exhaustiveness is that a method mode
may implement partial functions: on some inputs, its body might be
unsatisfiable, in which case the method will fail rather than return-
ing values for its unknowns. We extend the JMatch language with
a way to specify when a method will successfully produce a re-
sult. This “matching precondition” is analogous to a precondition,
but rather than specifying when a method call is legal, it specifies
when pattern matching is guaranteed to succeed. The specification
is conservative in that matching could succeed even when the con-
dition does not hold.

For example, consider the constructor ZNat() in Figure 3. Any
ZNat object must have a representation as a nonnegative integer.
The corresponding matching precondition for the forward mode is
n >= 0, meaning that for any nonnegative n, there exists a ZNat
object matching that n. This matching precondition implies the
constructor body, allowing successful verification of the forward
mode. The backward mode of ZNat(), on the other hand, is total,
corresponding to the matching precondition true.

Asking the programmer to specify matching preconditions for
each mode would be verbose and repetitive, since different modes
may share knowns (i.e., inputs). Our insight is that the programmer
can write a single condition that captures when matching will
succeed for the entire relation implemented by a method. We call
this condition the matches clause for the method. Methods having
no matches clause defaults to matches(false), meaning that
matching is not guaranteed to succeed for any input. The JMatch
2.0 compiler must extract the matching precondition for each mode
from the consolidated matches clause. The extraction is described
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Figure 8. The ZNat relation.

formally in Section 4.3; the rest of this section illustrates how
extraction works for ZNat().

The matches clause for ZNat() is shown in Figure 7. Fig-
ure 8(a) shows the actual relation implemented by ZNat; Fig-
ure 8(b) shows the matches clause, describing the relation con-
sisting of integral points in the shaded region. This relation can be
viewed as an approximation to the true ZNat relation. Informally,
the extraction obtains the matching precondition by projecting this
relation onto the axis corresponding to an appropriate mode, ob-
taining matching preconditions shown as thick arrows. For the for-
ward mode (returns(result)), the relation is protected onto the
n axis, obtaining n >= 0. For the backward mode (returns(n)),
it is projected onto the result axis, obtaining true.

4.3 Extracting matching precondition from matches clause
In general, the body of a method implements some relation B
and the matches clause specifies another relation M . Suppose
that the method is a relation over a set of variables fExg. For each
mode M of the method, this set is partitioned into disjoint sets of
knowns (inputs) f Ekg and unknowns (outputs) fEug. We can then view
the relations M and B as predicates over knowns and unknowns,
M. Ek; Eu/ and B. Ek; Eu/, respectively. Given Ek, the precise condition
in which the body guarantees success is therefore 9Eu: B.Ek; Eu/. We
call this formula the precise matching precondition.

For brevity, we define a function �M that constructs the pre-
cise matching precondition for mode M by projecting an arbitary
predicate B onto the knowns:

.�MB/. Ek/
4
” 9Eu: B. Ek; Eu/

Given M and B , �MB is a predicate on Ek that holds when Ek pro-
vides some way to satisfy B in mode M and hence to successfully
pattern-match.

To preserve abstraction, reasoning about exhaustiveness must be
done using the matches clause M , not B . Intuitively, if M ) B ,
the body will be satisfiable whenever the matches clause holds;
however, to require this implication would be unnecessarily restric-
tive. In the case of ZNat relation, for example, n >= 0 does not
imply the actual relation, and the only matches clause that does so
while preserving abstraction is false. A more useful correctness
condition is M )

V
M0 �M0B , where M0 is ranges over de-

clared modes. In other words, satisfiability of the matches clause
only needs to imply satisfiability of the body in all the modes actu-
ally available. This can be visualized as expandingB (in the case of
ZNat, the dots in Figure 8(a)) along all the dimensions correspond-
ing to the supported modes (obtaining, in this case, the shaded area
in Figure 8(b)).

It is easy to show that the formulaM )
V

M0 �M0B is equiva-
lent to �MM ) �MB for each declared mode M. This suggests
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that given the mode M D .f Ekg; fEug/ and the inputs Ek, we should
verify exhaustiveness by using .�MM/. Ek/ as the matching pre-
condition. Unfortunately, the existential quantifiers in this formula
make it ill-suited to automated reasoning. Instead, we construct a
weakening of �MM that does not mention existential quantifiers.
Let us denote this weakened predicate on Ek as ExtractMM .

The construction of ExtractMM proceeds as follows. We first
convert the matches clause into negation normal form (NNF) so
that the formula uses only positive logical operators over atomic
formulas. We then use a variant of the usual JMatch algorithm for
generating solutions to a formula. The first step is to reorder the
atoms so that as many unknowns as possible can be solved from left
to right. After this reordering, atoms that do not mention unknowns
are left unchanged, as are atoms in which all unknowns are solv-
able in the left-to-right order. Atoms mentioning any unsolvable
unknowns are dropped; that is, they are replaced with true. Any
remaining occurrences of unknowns can be thought of as existen-
tially quantified, but because each remaining unknown is solvable,
it represents a solution expressed entirely in terms of knowns.

For instance, in the ZNat example, the atomic formula n >= 0
is dropped in the backward mode because n is unsolvable, leav-
ing only true. As another example, consider extracting a matching
precondition for x > 0 && y >= 0 && x+1 = y, where x is un-
known and y known. The formula is first reordered to allow solving
for x, yielding y >= 0 && x+1 = y && x > 0. The first atom
is left unchanged because it only mentions y. The second is also
kept because it solves fore x, allowing the third atom to be retained
as well. Because x is solved by the value y-1, the extracted pre-
condition is y >= 0 && (y-1)+1 = y && (y-1) > 0, which is
equivalent to y > 1. In general, xmight be solved by a user-defined
method. Section 5 explains how atoms containing such unknowns
are handled.

Dropping unsolvable atoms is a heuristic, but it seems effec-
tive because such atoms are typically satisfiable for all possi-
ble values of the knowns. In general, however, dropped atoms
might not be satisfiable, in which case ExtractMM may not be
conservative. For example, if the matches clause were instead
y >= 0 && x < y && x > 0, dropping the atoms x < y and
x > 0 would result in the extracted precondition y >= 0. The pre-
cise matching precondition .�MM/.y/ is rather y >= 2, since
there is no satisfying assignment for x when y < 2.

ExtractMM can be used not only for analyzing exhaustiveness,
but also for verifying that the method body implements its extracted
precondition in mode M. That is, when the method body is imple-
mented as a formula, the compiler verifies in each mode M that
for all inputs Ek, .ExtractMM/. Ek/ ) .�MB/. Ek/. This ensures
soundness for exhaustiveness analysis done using ExtractMM .
Verification is done using an SMT solver, as described in Section 6.
For imperative method implementations, this verification is left to
the programmer, though existing program logics might be used to
obtain a verifiable logical interpretation in many cases.

4.4 Opaquely refining matches
In general, we may want to support modes in which precondition
extraction fails because the matches clause does not or cannot cap-
ture the relationship among the arguments. For example, consider
adding to ZNat() a predicate mode returns(), in which there are
no unknowns. In this mode, the matches clause n >= 0 does not
correctly capture the matching precondition, yet the existing imple-
mentation is correct. To support such modes, matches clauses may
be refined using the special opaque predicate notall. During pre-
condition extraction, an atom notall(�!xi) is treated as unsolvable
if any of the variables xi is unknown, and is therefore dropped; if

all of the variables are known or already solved, however, the pred-
icate is treated as false.

Thus, to support a predicate mode for ZNat(), the predicate
notall(result, n) is conjoined with n >= 0 to indicate that
pattern matching is not guaranteed to succeed when both result
and n are known. This notall predicate corresponds to the refine-
ment that converts the gray area in Figure 8(b) into just the black
dots in Figure 8(a). The opaque notall is needed because this re-
finement cannot be characterized abstractly.

4.5 Ensures clauses
Matches clauses are a kind of multimodal precondition. To im-
prove the precision of verification and exhaustiveness reasoning
in JMatch, we add the ensures clause, a multimodal postcondition
whose syntax resembles previous, unimodal postcondition speci-
fications (e.g., [25, 27]). The ensures clause for a method is an
abstraction of the relation implemented by the method, expressed
in terms that client code can understand; that is, it only mentions
names a legal caller could name, similar to the specifications pro-
posed by Leavens and Müller [14].

Unlike the matches clause, the ensures clause must define an
overapproximation (a superset) of the implemented relation. Thus,
in any context where a method call is known to have succeeded, the
ensures clause can be assumed to hold with respect to the values
supplied as knowns and the values returned as unknowns.

Because the clauses for both matches and ensures are often
identical, the syntax matches ensures(f ) may be used as a
shorthand for matches(f ) ensures(f ).

5. Checking exhaustiveness and totality
JMatch 2.0 must show the exhaustiveness of various pattern-
matching statements (switch, cond, and let). Similar verification
is required for methods with a matches or ensures clause, since
they promise to succeed in each mode when the extracted matching
precondition is true, and since the postcondition must hold if the
methods succeed. In addition, both arms of | must be verified as
disjoint. In each case, the analysis constructs quantifier-free formu-
las that can be satisfied only if some cases are not handled by the
appropriate patterns or formulas.

Section 4 described verification informally while pretending
that formulas can be verified directly, e.g., by an SMT solver. This
is not true in general, because formulas may contain user-defined
predicates that must be treated abstractly.

To aid in constructing formulas to be verified the SMT solver,
we introduce an intermediate representation language F that is
similar to the language of quantifier-free logical formulas. Each
formula is transformed to an F formula using function VF defined
inductively on the syntax of formulas. VF takes a formula f to
be transformed, along with the set U of unknowns to be solved in
f , and an additional F formula F that represents the rest of the
constraint. VF ŒŒf �� U F holds if (1) f is satisfiable and (2) F also
holds under any solution to the unknowns in U satisfying f .

Because space is limited, the definitions of the translation are
elided here; they are available in the technical report [11].

The Z3 theorem prover [3] is used to find a model satisfying
these F formulas. This model can be used to construct a counterex-
ample to explain the failure of exhaustiveness or totality to the user.
The verification done by Z3 does not affect the dynamic semantics
of JMatch 2.0; it only affects warnings given to the programmer.

In the remainder of this section, let �f be the set of variables
declared in f .

5.1 Verifying exhaustiveness
Every switch and if statement can be written as a cond statement.
Thus, verification of switch and if reduces to that of cond.
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To verify a cond statement cond {
�������!
(fi) {si} else s }, we

begin by asserting the invariants of all the known variables in the
context. We then proceed case by case. The algorithm first checks
whether fi yields a solution to its unknowns. If not, the compiler
issues a warning that this arm is redundant. In either case, the
assertion is updated to rule out patterns matched up to the current
arm. The else arm, if present, is equivalent to true.

Finally, the cond statement is exhaustive if the final assertion is
unsatisfiable. If not, a counterexample is generated from a satisfy-
ing assignment, and a nonexhaustive warning is reported.

A cond statement can be used to refine patterns in the same
way as a where pattern. Since both switch and if are syntactic
sugar for cond, so can they. Let I be the invariant prior to the
verification of a conditional case (f ) {s}. We verify s with the
stronger invariant I 0 , I ^ .VF ŒŒf �� �f true/.

To verify let f , we check whether the negation of f is satis-
fiable. If so, a warning that the let statement may not always be
total is reported to the programmer.

5.2 Verifying matching specifications
As described in Section 4.3, the bodies of methods are checked
against the matches clause of the method to ensure that the body
succeeds whenever the matches clause is true. Recall that this
entails verifying the proposition ExtractMM ) �MB .

One complication is that the matches clause M of a method
may refer to other methods. These method references may solve for
unknown variables in M . In turn, these unknowns may be further
referenced by other atoms in M , imposing additional matching
preconditions.

The matches and ensures clauses of the referenced methods
are used to resolve this complication. The matches clause imposes
additional matching precondition to M , and the ensures clause
constrains the values of unknowns that may be referenced later in
M .

In the following example, the matches clause of method bar
refers to foo:

int foo(int x)
matches(x > 2) ensures(result >= x);

int bar(int y)
matches(y > 0 && result = foo(y) && result < 4);

Now, suppose we want to extract bar’s matching precondition for
the forward mode, i.e., when y is known. The reordering and atom-
dropping procedure does not alter the matches clause. This means
bar(y) succeeds if y > 0, foo(y) returns a result, and foo(y)
< 4. The invocation of foo in bar’s matches clause succeeds if
y > 2, and foo’s ensures clause says result � y. Therefore,
bar(y) is guaranteed to succeed if y > 0 ^ y > 2 ^ result �
y ^ result < 4, which is equivalent to y D 3.

We now give the formal translation for ExtractMM , where
M D .f Ekg; fEug/. If OM is the result of reordering and dropping
atoms in M , and fEOug � fEug is the set of unknowns remaining in
OM , then we have

ExtractMM , VF ŒŒ OM��
�
fEOug [ � OM

�
true

Similarly, the precise matching precondition is defined as

�MB , VF ŒŒB��
�
fEug [ �B

�
true

With the above definitions, we are ready to formally define the
verification conditions for JMatch methods. To verify a method

Tr foo(
���!
Ti xi) matches(M) ensures(E)

in mode M with body B , we prove these two assertions:

ExtractMM ) �MB (2)
�MB ) VF ŒŒE�� �E true (3)

Assertion (2) says that if the extracted matching precondition for
M holds, then B succeeds in generating a solution to all of its
unknowns, which can be part of the arguments or declared in B
itself. Assertion (3) says that ifB succeeds in generating a solution,
then the postcondition of the method holds.

For a method declared in an interface or declared abstract, and
for each mode M declared in that method, the assertion

ExtractMM ) ExtractME

is proven instead. Since the matches clause must specify an under-
approximation of the (unimplemented) relation and the ensures
clause an overapproximation, this assertion says that by transitivity,
if the matching precondition holds, then the postcondition should
hold as well.

Failure to prove these assertions means that the method does not
respect its contract. As a result, a warning for the violation is issued
to the programmer.

5.3 Verifying disjoint patterns
JMatch 2.0 verifies multiplicity of formulas and patterns, ensuring
that they generate at most one solution in non-iterative modes.
Disjoint pattern disjunctions allow disjunctions to be expressed
without generating multiple solutions, but this property must be
verified. We also overload the | symbol as a logical operator;
the formula f1 | f2 is a disjunction that may be used only if at
most one of f1 or f2 is satisfiable. Let U be the set of unsolved
unknowns in p1 | p2, and let p01 be the result of substituting each
unsolved unknown in p1 with a fresh variable, and similarly for
p02. Patterns p1 and p2 are disjoint if .VF ŒŒx D p01�� U true/ ^
.VF ŒŒx D p

0
2�� U true/, where x is a fresh variable, is unsatisfiable.

Similiarly, when | is used as a logical operator, formulas f1 and f2

are disjoint if .VF ŒŒf
0

1�� U true/^.VF ŒŒf
0

2�� U true/ is unsatisfiable.
Consider the examples in Section 3.3. The pattern 1 | 2 is

disjoint because x D 1 ^ x D 2 is unsatisfiable. The disjunction
y-1 | y+1 is disjoint when y is known. When y is unknown, the
verification procedure renames y in each arm to a fresh variable,
yielding x D y1 � 1 ^ x D y2 C 1, which is satisfiable, so the
compiler generates a warning.

5.4 Soundness
As in most functional programming languages, we consider failures
of exhaustiveness not as errors but rather as a reason to warn the
programmer. Our goal is to help programmers be effective. There-
fore, some unsoundness or incompleteness may be tolerable or even
desirable if it rarely limits or annoys the programmer. Our verifica-
tion procedures establish two main sources of unsoundness, possi-
bly leading to erroneous warnings or lack of warnings. An obvious
source is that JMatch is an imperative language, yet the reasoning
procedures described here do not take side effects into account. We
do not consider this a serious problem because JMatch encourages
a programming style in which side effects are used sparingly and
are encapsulated inside data abstractions. A second source of un-
soundness arises from recursively defined methods, which are dis-
cussed in Section 6.2. In some cases, the compiler may report that
it cannot prove exhaustiveness or lack of redundancy. This does not
seem to be a problem in practice.

6. Implementation
We have built a prototype implementation of JMatch 2.0 by extend-
ing the JMatch 1.1.6 compiler [18] to add the new pattern matching
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interface Nat {
boolean zero() returns();
boolean succ(Nat n) returns(n);
...

}
class PSucc implements Nat {
Nat pred;
boolean zero() returns() ( false )
static PSucc create$zero() ( false )
boolean succ(Nat n) returns(n)
( pred = n )

static PSucc create$succ(Nat n)
( result = PSucc() && result.pred = n )

...
}

Figure 9. Translation of named constructors.

features in Section 3 and the static annotations in Section 4, and to
use the Z3 theorem prover [3] to verify exhaustiveness, totality, and
multiplicity.

6.1 Translating new features
Each named constructor foo(...) defined in class C is trans-
lated into two JMatch methods having the same visibility as that
of foo. The first method is boolean foo(...) and contains all
the modes where result is known. The other method is static
C create$foo(...) and contains the remaining modes, whose
body requires creating a fresh object. For named constructors de-
fined in an interface, the latter translation is omitted. An invoca-
tion of a named constructor is also transformed to use one of the
translated methods accordingly, with the exception of invocations
appearing in invariants and matches and ensures clauses. These
invocations are retained as a type object of the class and will be
used directly during verifications. An example translation of Nat
and PSucc is shown in Figure 9.

In the JMatch implementation, when a variable w of type Tw is
matched against a value x of type Tx , only an instanceof check is
introduced if Tw is not a supertype of Tx . To use the equality con-
structor, JMatch 2.0 further checks whether an equality constructor
accepting one argument of type Tx exists in the implementation of
Tw and invokes it on x if the instanceof check fails.

6.2 Handling recursion
The verification functions defined in Section 5 unwind all method
invocations appearing in a formula being translated into assertions
expressed in terms of the matches and ensures clauses of the
methods. In general, these translations may not be well-founded
when the matches and ensures clauses of methods are mutually
dependent, or in invariants of mutually recursive types. Neverthe-
less, the verification may be successful without fully unrolling all
facts about method calls and types. We use Z3’s external theory
plugin to implement lazy assertions by introducing interpreted the-
ory predicates and functions. Our external theory for Z3 expands
facts about type invariants and about matching preconditions and
postconditions only when instances of the theory predicates are as-
signed a truth value. For example, if an instance of the predicate on
procedure invocation is assigned false, the negation of the matches
clause of the associated procedure is asserted on the procedure in-
puts. If the instance is assigned true, the ensures clause is asserted.
An interpreted theory function is used to enforce the uniqueness of
procedure outputs when the procedure is a (partial) function.

Because Z3 treats each asserted axiom as global, every instan-
tiated axiom is asserted as an implication whose premise is the as-
signed predicate. Z3 also keeps track of every asserted theory pred-
icate in its logical context, which allows proving exhaustiveness

using class invariants without unrolling them entirely. To prevent
unbounded unrolling, iterative deepening [12] is used to unroll as
deeply as possible within a time budget. Since the theory will not
further expand facts beyond the maximum depth, Z3 concludes that
no satisfying assignment exists. If this happens when checking ex-
haustiveness, the compiler warns that it did not find a counterexam-
ple to exhaustiveness, but that there might be one.

7. Evaluation
Our evaluation of JMatch 2.0 aims to answer three kinds of ques-
tions:

� Is the extended language expressive? In particular, does it permit
concise implementations? What annotation burden is incurred by
programmers using the new verification procedures?
� Is the verification performed by our implementation effective on

different kinds of code?
� What is the compile-time overhead of verification?

7.1 Code examples
We have evaluated our prototype JMatch 2.0 implementation on
a variety of different coding problems. For each of these code
examples, we have shown that the compiler correctly performs the
three verification tasks described above, and we have measured
the time taken by verification and compared it to total compilation
time. To evaluate expressiveness, we have also implemented each
example as concisely as we could using Java.

Natural numbers The implementations of natural numbers shown
earlier in the paper are also used for our evaluation.

Lists A JMatch 2.0 interface List for immutable lists is shown in
Figure 10. We implement this interface in four very different ways:
the empty list (EmptyList), regular cons lists (ConsList), snoc
lists (SnocList) in which elements are appended to the end, and
lists with an array representation (ArrList), in which the under-
lying array is imperatively updated by cons but is shared as much
as possible across multiple lists that record indices into it. To give
the flavor of these implementations, the figure shows how the mul-
timodal named constructor snoc is defined for ConsList. As the
remaining code in the figure shows, these four list implementations
interoperate smoothly, and list operations, even including reverse,
can be used as patterns.

CPS We implement CPS conversion of a simple abstract syntax
tree (AST) for lambda calculus; though Figure 5 shows only the
key code, the implementation also includes AST classes.

Type inference We implement unification-based type inference
over the same ASTs, augmented with type declarations. The code
for type inference is placed within the AST node classes.

Trees A JMatch 2.0 interface Tree for binary trees is shown in
Figure 11. We implement the AVL tree based on this interface. The
rebalance method, also shown in the figure, returns the balanced
version of the input subtree having v as the value at the root and l
and r as its children. The invariant of Tree and the ensures clause
of branch are crucial for the JMatch 2.0 compiler to verify that
the formula in rebalance covers all the possible input subtrees.
Checking the disjoint disjunctions also ensures that there is only
one way to match each tree.

Collections We convert the prior JMatch reimplementation of the
key collection classes from the Java collections framework [17] into
JMatch 2.0. This code base includes implementations of various
data structures: hash tables, red-black trees, and resizable arrays.

350



interface List {
invariant(this = nil() | cons(_, _));
constructor nil() matches(notall(result));
constructor cons(Object hd, List tl)
matches(notall(result)) returns(hd, tl);

constructor snoc(List hd, Object tl)
matches ensures(cons(_, _)) returns(hd, tl);

constructor equals(List l);
constructor reverse(List l) matches(true) returns(l);
boolean contains(Object elem) iterates(elem);
int size();

}
constructor snoc(List h, Object t) // in ConsList
matches ensures(cons(_, _)) returns(h, t) (
h = EmptyList.nil() && cons(t, h)

| h = cons(Object hh, List ht) && cons(hh, snoc(ht, t))
)
static int length(List l) {
switch (l) {
case nil(): return 0;
case snoc(List t, _): return length(t) + 1;
case cons(_, List t): return length(t) + 1;
// detected as redundant

}
}
List l = EmptyList.nil(); // l = []
l = SnocList.cons(0, l); // l = [[], 0]
l = ConsList.snoc(l, 1); // l = [0, [1, []]]
l = ArrList.snoc(l, 2); // l = [0, 1, 2]
l = ConsList.cons(3, l); // l = [3, [0, 1, 2]]
let l = reverse(List r1); //r1 = [2, [1, [0, [3, []]]]]
l = ArrList.cons(4, l); // l = [4, 3, 0, 1, 2]
let l = reverse(List r2); //r2 = [2, 1, 0, 3, 4]

Figure 10. List interface and sample usage.

7.2 Expressiveness
We can assess the expressiveness of JMatch 2.0 by comparing
the number of language tokens needed to implement each of the
examples. The resulting token counts shown in Table 1 indicate that
JMatch 2.0 code is considerably more concise than in Java: 42.9%
shorter on average. This conciseness is largely due to the JMatch
support for modal abstraction and for equality constructors.

7.3 Effectiveness
There are three new verification tasks. First, switch and related
constructs (let, cond, etc.) should be exhaustive. Second, method
implementations must be correct with respect to both their declared
matches clause and their ensures clause. Third, disjoint disjunc-
tions must indeed be disjoint, to verify multiplicity.

All of the examples shown in the table, and all prior examples
shown in the paper, are successfully verified for exhaustiveness,
(non-)redundancy, and multiplicity. The compiler caught several
subtle exhaustiveness bugs during development of this code, such
as incorrect order of arguments to methods and invocation to an
unexpected implementation of overloaded or overridden methods.
In case of TreeMap, the absence of red-black tree invariants results
in a nonexhaustive warning in the balance method.

7.4 Efficiency
Table 1 shows that verification time is reasonable for all of the code
examples, even with our unoptimized prototype implementation.
The reported numbers include compilation time of dependencies
but exclude the overhead of initializing the compiler (689 ms) and
the Z3 solver (680 ms). On average, the verification overhead on
the evaluated code is 37.5% compared to the regular compilation
time.

Implementation JMatch Java w/o verif w/ verif
Nat 41 (21) 29 0.100 0.104

PZero 85 189 0.258 0.331
PSucc 98 226 0.280 0.435
ZNat 161 319 0.377 0.459
List 114 (72) 91 0.129 0.123

EmptyList 164 455 0.416 0.510
ConsList 309 1007 0.807 2.47
SnocList 311 1006 1.05 3.36
ArrList 473 1208 0.864 1.90
Expr 96 (57) 80 0.710 0.846

Variable 192 434 0.689 0.852
Lambda 239 500 1.20 1.52

TypedLambda 86 92 1.38 1.57
Apply 232 506 1.15 2.31
CPS 325 1279 7.88 8.37
Type 154 187 0.218 0.307

BaseType 73 163 0.350 0.443
ArrowType 82 189 0.357 0.444

UnknownType 154 245 0.372 0.490
Environment 211 310 0.695 0.862

Tree 114 (44) 69 0.165 0.170
Leaf 124 351 0.420 0.510

Branch 202 553 0.529 0.682
AVLTree 439 720 2.84 9.01

ArrayList 773 1098* 1.67 1.81
LinkedList 886 1232* 2.00 2.20
HashMap 1082 1874* 3.41 3.66
TreeMap 3606 3955* 5.90 6.43

Table 1. The number of tokens for implementations in JMatch 2.0
versus Java. Interface token counts are reported both with and with-
out (in parentheses) matches and ensures clauses. Verification
overhead is given in seconds as the average of 24 runs, with a stan-
dard deviation of at most 15%. Some comparisons (*) are versus
a PolyJ [21] implementation that is more concise than the Java
one. For example, the PolyJ TreeMap is 20% shorter than the Java
equivalent [17].

The speed of verification is not surprising, because verification
is performed one method at a time. Verification is simple and
tractable because the abstraction mechanisms we introduced to
JMatch allow both programmers and the SMT solver to reason
locally about code.

Because JMatch 2.0 does not significantly change the dynamic
semantics of JMatch, the translation to Java is essentially un-
changed. The performance of the compiled programs is therefore
similar to one in the previous evaluation [17].

8. Related work
Integrating pattern matching with objects and data abstraction has
been the subject of quite a few research efforts.

Case classes in the Scala programming language [22], as in
Pizza [23], provide pattern matching by allowing case-class con-
structors in case arms. Scala uses sealed classes to limit the num-
ber of case classes that can inherit them. This makes exhaustive-
ness easy to verify, but sacrifices extensibility because only one
implementation is allowed per declaration of a sealed class. Our
invariant declaration achieves the same level of exhaustiveness
checking but allows programmers to extend classes freely. Closely
related approaches include extensible algebraic data types [32] and
polymorphic variants [8], which support some extensibility and
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interface Tree {
invariant(this = leaf() | branch(_,_,_));
constructor leaf() matches(height() = 0) ensures(height() = 0);
constructor branch(Tree l, int v, Tree r) matches(height() > 0) ensures(height() > 0 &&

(height() = l.height() + 1 && height() > r.height() || height() > l.height() && height() = r.height() + 1))
returns(l, v, r);

int height() ensures(result >= 0);
}

static Tree rebalance(Tree l, int v, Tree r) matches(true) ( // in AVLTree
result = Branch(Branch(Tree a, int x, Tree b), int y, Branch(Tree c, int z, Tree d))
&& ( l.height() - r.height() > 1 && d = r && z = v // rotation from left

&& ( l = branch(Tree ll, y, c) && ll = branch(a, x, b) && ll.height() >= c.height() // case 1: single rot.
| l = branch(a, x, Tree lr) && lr = branch(b, y, c) && a.height() < lr.height()) // case 2: double rot.

| r.height() - l.height() > 1 && a = l && x = v // rotation from right
&& ( r = branch(Tree rl, z, d) && rl = branch(b, y, c) && rl.height() > d.height() // case 3: double rot.
| r = branch(b, y, Tree rr) && rr = branch(c, z, d) && b.height() <= rr.height())) // case 4: single rot.

| abs(l.height() - r.height()) <= 1 && result = Branch(l, v, r)
)

Figure 11. Tree interface and the AVL tree rebalance method, which uses the interface to check for totality.

deep pattern matching, but tie pattern matching to the data repre-
sentation more than is ideal.

Wadler’s views [30] were an early, influential generalization
of pattern matching. Views require an explicitly defined bijection
between the abstract view and the representation. Unlike in our
language, views do not reconcile pattern matching with subtyping
and do not allow matching without knowing the identity of the
implementation.

Extractors are introduced in [5] as an alternative to case classes
that is compatible with data abstraction. Each extractor contains
apply and unapply methods, called implicitly during construc-
tion and pattern matching. There is no check that these methods are
inverses, however. Modal abstractions in JMatch are less verbose
and reduce the chance of such errors. No exhaustiveness checking
was proposed for extractors. Dotta et al. [4] verify extractors by
relying on sealed classes, and support user-defined constructor pat-
terns. Their work does check for pattern disjointness; abstraction
prevents us from making this guarantee.

Active patterns in F# [29] are similar to extractors, but support
exhaustiveness checking by allowing the declaration that a set of
patterns is complete. Because they offer only a backward mode,
they do not support algebraic reasoning in the same way as modal
abstractions. They also do not support object-oriented extensibility.

The RINV language of Wang et al. [31] also uses invertible
computation to implement pattern matching that is compatible with
data abstraction. Rather than extracting computations from a logi-
cal characterization of the computation, RINV instead uses a re-
stricted language for abstraction functions that guarantees invert-
ibility. These functions are bidirectional rather than fully multi-
modal and do not support iterative modes. RINV analyzes exhaus-
tiveness via specifications of complete sets of constructors, but does
not verify these specifications. RINV supports neither subtyping
nor extensibility.

Suter et al. [27] also use abstraction functions to reduce alge-
braic data types to abstract values such as multisets, and use known
theories of these abstract values to reason about data types. Meth-
ods may be annotated with a postcondition in terms of abstraction
functions. Leon [28] extends this reasoning to recursive programs.
Used in conjunction with sealed classes, these decision procedures
assist in a more precise analysis of pattern exhaustiveness by tak-
ing type refinement into account. These decision procedures do not
support modal abstraction.

An orthogonal approach to integrating pattern matching into
object-oriented languages is predicate dispatch [6, 20], which ex-

tends multimethods with the ability to choose an implementation
based on general predicates over the arguments. Predicate dispatch
appears to be largely orthogonal and complementary to the pattern
matching mechanisms described here. The predicates in prior work
on predicate dispatch are, however, less expressive than those we
have explored here. OOMatch [24] uses pattern matching in predi-
cate dispatch. Its deconstructors are similar to the backward mode
of JMatch constructors. OOMatch’s pattern matching differs in that
it can appear only in method headers as part of predicate dispatch,
and no separation of specification and implementation is provided.
HydroJ [15] uses predicate dispatch to express extensible commu-
nication patterns in distributed systems; however, pattern matching
is done over concrete data structures, tagged trees.

Matchete [10] extends Java with pattern matching operators
similar to extractors, but matches on regular expressions and other
specialized expressions. It does not analyze exhaustiveness.

The Thorn language integrates patterns to make code more con-
cise and robust [1]. Its rich set of patterns includes boolean com-
binations of patterns, general list patterns, regular expressions, and
first-class patterns. First-class patterns in Thorn provide pattern ab-
straction that supports evolution of the data structure used in pattern
matching, but Thorn does not support multiple implementations.
As a dynamic language, Thorn does not check exhaustiveness.

Harmony and the Boomerang language [2, 7] support bidirec-
tional computations over trees and strings through domain-specific
lens combinators. The types in these languages support reasoning
about the totality of transformations in these domains, but data ab-
straction is not a feature of these languages.

One focus of research on pattern matching has been on how to
generate efficient code that shares computation across different pat-
terns (e.g., [13]). Such optimizations are orthogonal to this work.

9. Conclusions
A clean integration of pattern matching into the object-oriented set-
ting could simplify many programming tasks. Prior work has not
managed to provide expressive pattern matching with strong data
abstraction and subtyping, along with statically checked exhaus-
tiveness. This is the first work that manages to combine these im-
portant features. We improved the integration of pattern matching
with object-oriented programming, yet showed that even with this
more powerful pattern matching, it is possible to reason statically
about exhaustiveness, redundancy, totality, and multiplicity.
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The most important insight was that programmers need to be
able to specify the precondition for successful pattern matching in
an abstract way. We showed that it is possible to do this while
keeping the annotation burden low, by automatically extracting
matching preconditions. The specification techniques introduced
may be helpful for other models of multidirectional computation.

Acknowledgments
Soam Vasani and Denis Bueno got the JMatch exhaustiveness
project off to a good start. Leo de Moura helped with using Z3.
Ross Tate, Owen Arden, Aslan Askarov, Jed Liu, Harry Terkelsen,
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